12.已知函數(shù)f(x)=alnx(a>0),e為自然對數(shù)的底數(shù).
(1)若過點(diǎn)A(2,f(2))的切線斜率為2,求實(shí)數(shù)a的值;
(2)關(guān)于x的不等式$\frac{f(x)}{x-1}>1$在區(qū)間(1,e)上恒成立,求實(shí)數(shù)a的取值范圍.

分析 (1)求函數(shù)的導(dǎo)數(shù),根據(jù)函數(shù)導(dǎo)數(shù)和切線斜率之間的關(guān)系即可求實(shí)數(shù)a的值;(2)利用參數(shù)分離法結(jié)合導(dǎo)數(shù)的應(yīng)用即可得到結(jié)論.

解答 解答:(1)函數(shù)的f(x)的導(dǎo)數(shù)f′(x)=$\frac{a}{x}$(a>0),
∵過點(diǎn)A(2,f(2))的切線斜率為2,
∴f′(2)=$\frac{a}{2}$=2,解得a=4;
(2)由$\frac{f(x)}{x-1}$>1,得:$\frac{alnx+1-x}{x-1}$>0,
令h(x)=alnx+1-x,則h′(x)=$\frac{a}{x}$-1,
令h′(x)>0,解得x<a,
當(dāng)a>e時(shí),h(x)在(1,e)是增函數(shù),
所以h(x)>h(1)=0,
當(dāng)1<a≤e時(shí),h(x)在(1,a)上遞增,(a,e)上遞減,
∴只需h(x)≥0,即a≥e-1;
當(dāng)a≤1時(shí),h(x)在(1,e)上遞減,則需h(e)≥0,
∵h(yuǎn)(e)=a+1-e<0不合題意;
綜上,a≥e-1.

點(diǎn)評 本題主要考查導(dǎo)數(shù)的綜合應(yīng)用,要求熟練掌握導(dǎo)數(shù)的幾何意義,函數(shù)單調(diào)性最值和導(dǎo)數(shù)之間的關(guān)系,考查學(xué)生的綜合應(yīng)用能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.在平行四邊形ABCD中,已知AB=2,AC=$\sqrt{7}$,AD=1.若點(diǎn)P,Q滿足$\overrightarrow{AC}$=3$\overrightarrow{AP}$,$\overrightarrow{BD}$=4$\overrightarrow{PQ}$,則$\overrightarrow{AP}$•$\overrightarrow{AQ}$的值為$\frac{19}{36}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的焦距為4,其短軸的兩個(gè)端點(diǎn)與長軸的一個(gè)端點(diǎn)構(gòu)成正三角形.
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)F為橢圓C的左焦點(diǎn),M為直線x=-3上任意一點(diǎn),過F作MF的垂線交橢圓C于點(diǎn)P,Q.證明:OM經(jīng)過線段PQ的中點(diǎn)N.(其中O為坐標(biāo)原點(diǎn))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知拋物線C:x2=4y與直線y=kx+1交于M,N兩點(diǎn),其中點(diǎn)M位于點(diǎn)N的左側(cè).
(1)當(dāng)k=0時(shí),分別求拋物線C在點(diǎn)M和N處的切線方程;
(2)在y軸上是否存在點(diǎn)P,使得當(dāng)k變動時(shí),總有∠OPM=∠OPN(O為坐標(biāo)原點(diǎn))?若存在,求出P點(diǎn)坐標(biāo),若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.在平面直角坐標(biāo)系xOy中,已知橢圓C的中心在原點(diǎn)O,兩焦點(diǎn)F1、F2在x軸上,上頂點(diǎn)B與F1、F2圍成一個(gè)正三角,且橢圓C經(jīng)過點(diǎn)(1,$\frac{3}{2}$).
(1)求橢圓C的離心率e和標(biāo)準(zhǔn)方程;
(2)過右焦點(diǎn)F2的直線l將△BF1F2平分成面積相等的兩部分,求直線l被橢圓C截得的弦長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.設(shè)函數(shù)f(x)=ln x+$\frac{m}{x}$,m∈R.
(1)當(dāng)m=e(e為自然對數(shù)的底數(shù))時(shí),求f(x)的極小值;
(2)當(dāng)m為何值時(shí),g(x)=f′(x)-$\frac{x}{3}$有且只有一個(gè)零點(diǎn);
(3)若對任意b>a>0,$\frac{f(b)-f(a)}{b-a}$<1恒成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.關(guān)于函數(shù)$f(x)=3sin(2x-\frac{π}{3})+1(x∈R)$,下列命題正確的是( 。
A.由f(x1)=f(x2)=1可得x1-x2是π的整數(shù)倍
B.y=f(x)的表達(dá)式可改寫成$y=3cos(2x+\frac{π}{6})+1$
C.y=f(x)的圖象關(guān)于點(diǎn)$(\frac{π}{6},1)$對稱
D.y=f(x)的圖象關(guān)于直線$x=\frac{3}{4}π$對稱

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知函數(shù)f(x)=cos2x-sin2xsinφ-2cos2xsin2$\frac{φ}{2}$(0<φ<$\frac{π}{2}$)的圖象的一個(gè)對稱中心為($\frac{π}{6}$,0),則下列說法不正確的是(  )
A.直線x=$\frac{5}{12}$π是函數(shù)f(x)的圖象的一條對稱軸
B.函數(shù)f(x)在[0,$\frac{π}{6}$]上單調(diào)遞減
C.函數(shù)f(x)的圖象向右平移$\frac{π}{6}$個(gè)單位可得到y(tǒng)=cos2x的圖象
D.函數(shù)f(x)在x∈[0,$\frac{π}{2}$]上的最小值為-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.設(shè)函數(shù)f(x)=x2-ax+1(a∈R)
(Ⅰ)若對任意x1∈[1,2],任意x2∈[3,6],都有f(x1)≥f(x2),求a的取值范圍;
(Ⅱ)若不等式|f(x)|≥2x+1在[1,2]上恒成立,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案