已知點P的坐標(x,y)滿足
2x+y-6≥0
x-y≤0
x+2y-9≤0
,過點P的直線l與圓C:x2+y2=25相交于A、B兩點,則|AB|的最小值為(  )
分析:不等式組表示的區(qū)域為△CDE,其中C(1,4),D(2,2),E(3,3),過點P的直線l與圓C:x2+y2=25相交于A、B兩點,則|AB|的最小值時,區(qū)域內(nèi)的點到原點(0,0)的距離最大.由此可得結(jié)論.
解答:解:不等式組表示的區(qū)域如圖△CDE,其中C(1,4),D(2,2),E(3,3)

過點P的直線l與圓C:x2+y2=25相交于A、B兩點,則|AB|的最小值時,區(qū)域內(nèi)的點到原點(0,0)的距離最大
∵OC=
17
,OD=2
2
,OE=3
2

∴E到原點(0,0)的距離最大
∴|AB|的最小值為2
25-18
=2
7

故選B.
點評:本題考查線性規(guī)劃知識,考查學生分析解決問題的能力,解題的關鍵是|AB|的最小值時,區(qū)域內(nèi)的點到原點(0,0)的距離最大.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知點P的坐標(x,y)滿足
x+y≤4
y≥x
x≥1
過點P的直線l與圓C:x2+y2=14交于M、N兩點,那么|MN|的最小值是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知點P的坐標(x,y)滿足:
x-4y+3≤0
3x+5y≤25
x-1≥0.
及A(2,0),則
OA
OP
(O為坐標原點)的最大值是
10
10
_
/
/

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知點P的坐標(x,y)滿足
x+y≤4
y≥x
x≥1
,過點P的直線l與圓C:x2+y2=16相交于A、B兩點,則|AB|的最小值為
2
6
2
6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知點P的坐標(x,y)滿足
x+y≤4
y≥x 
x≥1 
,過點P的直線l與圓C:x2+y2=14交于A、B兩點,求|AB|最小值時的直線AB的方程
x+3y-10=0
x+3y-10=0

查看答案和解析>>

同步練習冊答案