有一段“三段論”推理是這樣的:對數(shù)函數(shù)f(x)=logax(a>0,a≠1)在(0,+∞)上是增函數(shù),因為函數(shù)f(x)=log
1
3
x
是對數(shù)函數(shù),所以函數(shù)f(x)=log
1
3
x
在(0,+∞)上是增函數(shù),以上推理中( 。
A、大前提錯誤
B、小前提錯誤
C、推理形式錯誤
D、結(jié)論正確
考點:演繹推理的基本方法
專題:規(guī)律型,推理和證明
分析:對數(shù)函數(shù)的底數(shù)的范圍不同,則函數(shù)的增減性不同,當(dāng)a>1時,函數(shù)是一個增函數(shù),當(dāng)0<a<1時,對數(shù)函數(shù)是一個減函數(shù),對數(shù)函數(shù)y=logax(a>0且a≠1)是增函數(shù)這個大前提是錯誤的.
解答: 解:∵當(dāng)a>1時,函數(shù)y=logax(a>0且a≠1)是一個增函數(shù),
當(dāng)0<a<1時,此函數(shù)是一個減函數(shù)
∴y=logax(a>0且a≠1)是增函數(shù)這個大前提是錯誤的,
從而導(dǎo)致結(jié)論錯.
故選A.
點評:本題考查演繹推理的基本方法,考查對數(shù)函數(shù)的單調(diào)性,解題的關(guān)鍵是理解函數(shù)的單調(diào)性,分析出大前提是錯誤的.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知
a
、
b
c
是兩兩垂直的單位向量,則|
a
-2
b
+3
c
|=(  )
A、14
B、
14
C、4
D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=lgx+
4-x
的定義域為( 。
A、[0,4]
B、(0,4]
C、[1,4]
D、[1,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知M(2,2)和N(5,-2),點P在x軸上,∠MPN=90°,則點P的坐標(biāo)為( 。
A、(1,6)
B、(1,0)
C、(6,0)
D、(1,0)或(6,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=1+log2x與g(x)=21-x在同一直角坐標(biāo)系下的圖象大致是(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的通項an=n2(cos2
3
-sin2
3
),其前n項和為Sn,則S60=(  )
A、1840B、1880
C、1960D、1980

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果關(guān)于x的不等式ax2+bx-2<0的解集是{x|x<-2或x>-1},那么關(guān)于x的不等式2x2+bx-a<0的解集為( 。
A、(-1,
1
2
B、(-1,-
1
2
C、(
1
2
,1)
D、(-
1
2
,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列函數(shù)中,與y=
x2
是同一函數(shù)的是( 。
A、y=(
x
2
B、y=x
C、y=|x|
D、y=
3x3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=xsinx+cosx的導(dǎo)函數(shù)是y=f′(x),則f′(
π
2
)=( 。
A、-2B、2C、0D、1

查看答案和解析>>

同步練習(xí)冊答案