將邊長為1的正方形ABCD沿對(duì)角線AC折起,使得平面平面,在折起后形成的三棱錐中,給出下列三個(gè)命題:①△是等邊三角形;②; ③三棱錐的體積是.其中正確的命題是_____.(寫出所有正確命題的序號(hào))

 

【答案】

①②.

【解析】

試題分析:設(shè)正方形中點(diǎn)為O,因?yàn)槠矫?img src="http://thumb.1010pic.com/pic6/res/gzsx/web/STSource/2013090813052938241048/SYS201309081305486370386244_DA.files/image001.png">平面,所以,斜邊BD=BC=CD,所以△是等邊三角形;由,所以;三棱錐的高即DO,所以三棱錐的體積為=,綜上知正確的命題是①②.

考點(diǎn):本題主要考查幾何體的特征,線面關(guān)系及體積計(jì)算。

點(diǎn)評(píng):小綜合題,折疊問題中要注意觀察折疊前后那些“不變量”,往往是解題不可缺少的條件。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

將邊長為1的正方形ABCD沿對(duì)角線BD折起,使得點(diǎn)A到點(diǎn)A′的位置,且A′C=1,則折起后二面角A′-DC-B的大。ā 。
A、arctan
2
2
B、
π
4
C、arctan
2
D、
π
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)將邊長為1的正方形ABCD沿對(duì)角線BD折成直二面角,若點(diǎn)P滿足
BP
=
1
2
BA
-
1
2
BC
+
BD
,則|
BP
|2的值為( 。
A、
3
2
B、2
C、
10-
2
4
D、
9
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將邊長為1的正方形ABCD沿對(duì)角線AC折起,使得平面ADC⊥平面ABC,在折起后形成的三棱錐D-ABC中,給出下列三個(gè)命題:
①面DBC是等邊三角形;  ②AC⊥BD;  ③三棱錐D-ABC的體積是
2
6

其中正確命題的個(gè)數(shù)為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將邊長為1的正方形ABCD沿對(duì)角線BD折起成直二面角A-BD-C,則在這個(gè)直二面角A-BD-C中點(diǎn)A到直線BC的距離是
3
2
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將邊長為1的正方形ABCD沿對(duì)角線AC對(duì)折成120°的二面角,則B、D在四面體A-BCD的外接球球面上的距離為
2
π
3
2
π
3

查看答案和解析>>

同步練習(xí)冊(cè)答案