【題目】定義:若兩個橢圓的離心率相等,則稱兩個橢圓是“相似”的.如圖,橢圓與橢圓是相似的兩個橢圓,并且相交于上下兩個頂點.橢圓的長軸長是4,橢圓短軸長是1,點分別是橢圓的左焦點與右焦點.

(1)求橢圓的方程;

(2)過的直線交橢圓于點,求面積的最大值.

【答案】(1)見解析(2)函數(shù)上的最大值.

【解析】

試題分析】

解:(1)當時, ,

,得,

變化時, 的變化如下表:

0

+

0

-

0

+

極大值

極小值

由上表可知,函數(shù)的遞減區(qū)間為,遞增區(qū)間為.

(2),令,得

,則,所以上遞增,

所以,從而,所以

所以當時, ;當時, ;

所以.

,則,令,則,

所以上遞減,而,

所以存在使得,且當時, ;當時, ,所以上單調(diào)遞增,在上單調(diào)遞減.

因為,所以上恒成立,當且僅當時取得“=”.

綜上,函數(shù)上的最大值.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù),

(Ⅰ)討論的極值點的個數(shù);

(Ⅱ)若對于,總有.(i)求實數(shù)的范圍; (ii)求證:對于,不等式成立.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖①,在矩形中, , 的中點,將三角形沿翻折到圖②的位置,使得平面平面.

(Ⅰ)在線段上確定點,使得平面,并證明;

(Ⅱ)求所在平面構(gòu)成的銳二面角的正切值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的中心在原點,焦點在軸,焦距為2,且長軸長是短軸長的倍.

1)求橢圓的標準方程;

2)設(shè),過橢圓左焦點的直線、兩點,若對滿足條件的任意直線,不等式)恒成立,求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對某校高一年級學生參加社區(qū)服務(wù)次數(shù)進行統(tǒng)計,隨機抽取名學生作為樣本,得到這名學生參加社區(qū)服務(wù)的次數(shù).根據(jù)此數(shù)據(jù)作出了頻數(shù)與頻率的統(tǒng)計表和頻率分布直方圖如下:

分組

頻數(shù)

頻率

10

0.25

25

2

0.05

合計

1

(1)求出表中及圖中的值;

(2)試估計他們參加社區(qū)服務(wù)的平均次數(shù);

(3)在所取樣本中,從參加社區(qū)服務(wù)的次數(shù)不少于20次的學生中任選2人,求至少1人參加社區(qū)服務(wù)次數(shù)在區(qū)間內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖是某賽季甲、乙兩名籃球運動員參加的每場比賽得分的莖葉圖,由甲、乙兩人這幾場比賽得分的中位數(shù)之和是(
A.65
B.64
C.63
D.62

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的左右焦點分別為,點為橢圓上一點. 的重心為,內(nèi)心為,且,則該橢圓的離心率為(

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某中學將100名高二文科生分成水平相同的甲、乙兩個“平行班”,每班50人.陳老師采用A,B兩種不同的教學方式分別在甲、乙兩個班進行教改實驗.為了了解教學效果,期末考試后,陳老師對甲、乙兩個班級的學生成績進行統(tǒng)計分析,畫出頻率分布直方圖(如下圖).記成績不低于90分者為“成績優(yōu)秀”.

(Ⅰ)根據(jù)頻率分布直方圖填寫下面2×2列聯(lián)表;

甲班(A方式)

乙班(B方式)

總計

成績優(yōu)秀

成績不優(yōu)秀

總計

(Ⅱ)判斷能否在犯錯誤的概率不超過0.05的前提下認為:“成績優(yōu)秀”與教學方式有關(guān)?

附:.

P(K2k)

0.25

0.15

0.10

0.05

0.025

k

1.323

2.072

2.706

3.841

5.024

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù), ),曲線處的切線方程為.

(Ⅰ)求, 的值;

(Ⅱ)證明: ;

(Ⅲ)已知滿足的常數(shù)為.令函數(shù)(其中是自然對數(shù)的底數(shù), ),若的極值點,且恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習冊答案