【題目】以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的正半軸為極軸,建立極坐標(biāo)系,兩種坐標(biāo)系中取相同的長(zhǎng)度單位,直線的參數(shù)方程為是參數(shù)),圓的極坐標(biāo)方程為.

(Ⅰ)求直線的普通方程與圓的直角坐標(biāo)方程;

(Ⅱ)設(shè)曲線與直線的交于,兩點(diǎn),若點(diǎn)的直角坐標(biāo)為,求的值.

【答案】(Ⅰ) (Ⅱ)

【解析】

(1)直線的參數(shù)方程消去參數(shù),能求出直線的普通方程;利用極坐標(biāo)與直角坐標(biāo)的互化關(guān)系即可得到圓C的直角坐標(biāo);

(2)點(diǎn)在直線上,且在圓內(nèi),直線的參數(shù)方程是,代入,得,由此能求出的值.

(Ⅰ)直線的普通方程為:,

,所以.

所以曲線的直角坐標(biāo)方程為

(或?qū)懗?/span>).

(Ⅱ)點(diǎn)在直線上,且在圓內(nèi),由已知直線的標(biāo)準(zhǔn)參數(shù)方程是代入,

,設(shè)兩個(gè)實(shí)根為,,則,,即,異號(hào).

所以.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】判斷下列命題的真假.

1)如果直線平行于直線,則平行于經(jīng)過(guò)的任何一個(gè)平面;

2)如果一條直線不在平面內(nèi),則這條直線就與這個(gè)平面平行;

3)過(guò)直線外一點(diǎn),可以作無(wú)數(shù)個(gè)平面與這條直線平行;

4)如果一條直線與一個(gè)平面平行,則它與該平面內(nèi)的任何直線都平行.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】我校為了解學(xué)生喜歡通用技術(shù)課程“機(jī)器人制作”是否與學(xué)生性別有關(guān),采用簡(jiǎn)單隨機(jī)抽樣的辦法在我校高一年級(jí)抽出一個(gè)有60人的班級(jí)進(jìn)行問(wèn)卷調(diào)查,得到如下的列聯(lián)表:

喜歡

不喜歡

合計(jì)

男生

18

女生

6

合計(jì)

60

已知從該班隨機(jī)抽取1人為喜歡的概率是

()請(qǐng)完成上面的列聯(lián)表;

()根據(jù)列聯(lián)表的數(shù)據(jù),若按90%的可靠性要求,能否認(rèn)為“喜歡與否和學(xué)生性別有關(guān)”?請(qǐng)說(shuō)明理由.

參考臨界值表:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

參考公式:其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某研究性學(xué)習(xí)小組為了調(diào)查研究學(xué)生玩手機(jī)對(duì)學(xué)習(xí)的影響,現(xiàn)抽取了30名學(xué)生,得到數(shù)據(jù)如表:

玩手機(jī)

不玩手機(jī)

合計(jì)

學(xué)習(xí)成績(jī)優(yōu)秀

8

學(xué)習(xí)成績(jī)不優(yōu)秀

16

合計(jì)

30

已知在全部的30人中隨機(jī)抽取1人,抽到不玩手機(jī)的概率為.

1)請(qǐng)將2×2列聯(lián)表補(bǔ)充完整;

2)能否在犯錯(cuò)誤的概率不超過(guò)0.005的前提下認(rèn)為玩手機(jī)對(duì)學(xué)習(xí)有影響;

3)現(xiàn)從不玩手機(jī),學(xué)習(xí)成績(jī)優(yōu)秀的8名學(xué)生中任意選取兩人,對(duì)他們的學(xué)習(xí)情況進(jìn)行全程跟蹤,記甲、乙兩名學(xué)生被抽到的人數(shù)為X,求X的分布列和數(shù)學(xué)期望.

附:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)).

(1)若處取到極值,求的值;

(2)若上恒成立,求的取值范圍;

(3)求證:當(dāng)時(shí), .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐中,底面為矩形, , 的中點(diǎn)。

1)證明: 平面;

2)設(shè), ,三棱錐的體積 ,求A到平面PBC的距離。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了落實(shí)國(guó)務(wù)院“提速降費(fèi)”的要求,某市移動(dòng)公司欲下調(diào)移動(dòng)用戶消費(fèi)資費(fèi).已知該公司共有移動(dòng)用戶10萬(wàn)人,人均月消費(fèi)50元.經(jīng)測(cè)算,若人均月消費(fèi)下降x%,則用戶人數(shù)會(huì)增加萬(wàn)人.

(1)若要保證該公司月總收入不減少,試求x的取值范圍;

(2)為了布局“5G網(wǎng)絡(luò)”,該公司擬定投入資金進(jìn)行5G網(wǎng)絡(luò)基站建設(shè),投入資金方式為每位用戶月消費(fèi)中固定劃出2元進(jìn)入基站建設(shè)資金,若使該公司總盈利最大,試求x的值.

(總盈利資金=總收入資金-總投入資金)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

1)寫出函數(shù)的單調(diào)區(qū)間;

2)若函數(shù)恰有3個(gè)不同零點(diǎn),求實(shí)數(shù)的取值范圍;

3)若對(duì)所有恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某機(jī)械廠要將長(zhǎng),寬的長(zhǎng)方形鐵皮進(jìn)行裁剪.已知點(diǎn)的中點(diǎn),點(diǎn)在邊上,裁剪時(shí)先將四邊形沿直線翻折到處(點(diǎn),分別落在直線下方點(diǎn),處,交邊于點(diǎn),再沿直線裁剪.

1)當(dāng)時(shí),試判斷四邊形的形狀,并求其面積;

2)若使裁剪得到的四邊形面積最大,請(qǐng)給出裁剪方案,并說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案