17.已知復數(shù)$\frac{1}{z}=-5i$,則$\overline z$等于( 。
A.-$\frac{i}{5}$B.$\frac{i}{5}$C.-$\frac{1}{5}$D.$\frac{1}{5}$

分析 利用復數(shù)的運算法則、共軛復數(shù)的定義即可得出.

解答 解:∵$\frac{1}{z}=-5i$,∴$z=\frac{i}{5}$,∴$\overline{z}=-\frac{i}{5}$,
故選:A.

點評 本題考查了復數(shù)的運算法則、共軛復數(shù)的定義,考查了推理能力與計算能力,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

7.已知橢圓$\frac{x^2}{16}+\frac{y^2}{12}=1$的左右焦點分別為F1,F(xiàn)2,M是橢圓上一點,N是MF1的中點,若ON=1,則MF1的長等于6.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.已知函數(shù)f(x)=x3+x,對于等差數(shù)列{an}滿足:f(a2-1)=2,f(a2016-3)=-2,Sn是其前n項和,則S2017=4034.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.在直角坐標系xOy中,曲線B是過點P(-1,1),傾斜角為$\frac{π}{4}$的直線,以直角坐標系xOy的原點為極點,x軸正半軸為極軸建立極坐標系,曲線A的極坐標方程是${ρ^2}=\frac{12}{{3+{{sin}^2}θ}}$.
(1)求曲線A的普通方程和曲線B的一個參數(shù)方程;
(2)曲線A與曲線B相交于M,N兩點,求|MP|+|NP|的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.如圖所示,某班一次數(shù)學測試成績的莖葉圖(如圖1)和頻率分布直方圖(如圖2)都受到不同程度的污損,其中,頻率分布直方圖的分組區(qū)間分別為[50,60),[60,70),[70,80),[80,90),[90,100],據(jù)此解答如下問題.(注:直方圖中[50,60)與[90,100]對應的長方形的高度一樣)

(1)若按題中的分組情況進行分層抽樣,共抽取16人,那么成績在[80,90)之間應抽取多少人?
(2)現(xiàn)從分數(shù)在[80,100]之間的試卷中任取2份分析學生失分情況,設抽取的試卷分數(shù)在[90,100]之間 份數(shù)為ξ,求ξ的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.用若干個棱長為1cm的小正方體疊成一個幾何體,圖1為其正視圖,圖2為其俯視圖,若這個幾何體的體積為7cm3,則其側視圖為( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.如圖,四邊形PCBM是直角梯形,∠PCB=90°,PM∥BC,PM=AC=1,BC=2,∠ACB=120°,AB⊥PC,直線AM與直線PC所成的角為60°.
(Ⅰ)求證:平面PAC⊥平面ABC;
(Ⅱ)求銳二面角M-AC-B的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.若α∈(0,2π),則適合$\sqrt{\frac{1+cosα}{1-cosα}}-\sqrt{\frac{1-cosα}{1+cosα}}=2cotα$的角α的集合是{α|0<α<π}.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.若復數(shù)z滿足$\frac{z+i}{-2{i}^{3}-z}$=i,則|$\overline{z}$+1|=( 。
A.$\frac{1}{2}$B.$\frac{{\sqrt{2}}}{2}$C.$\frac{{\sqrt{3}}}{2}$D.1

查看答案和解析>>

同步練習冊答案