12.已知函數(shù)f(x)=|2x-1|.
(1)若不等式f(x+$\frac{1}{2}$)≥2m+1(m>0)的解集為(-∞,-2]∪[2,+∞),求實(shí)數(shù)m的值;
(2)若不等式f(x)≤2y+$\frac{a}{{2}^{y}}$+|2x+3|,對(duì)任意的實(shí)數(shù)x,y∈R恒成立,求實(shí)數(shù)a的最小值.

分析 (1)求得不等式f(x+$\frac{1}{2}$)≥2m+1(m>0)的解集,再結(jié)合不等式f(x+$\frac{1}{2}$)≥2m+1(m>0)的解集為(-∞,-2]∪[2,+∞),求得m的值.
(2)由題意可得g(x)=|2x-1|-|2x+3|的最小值小于或等于2y+$\frac{a}{{2}^{y}}$,再利用絕對(duì)值三角不等式求得g(x)的最小值為4,可得4≤2y+$\frac{a}{{2}^{y}}$ 恒成立,再利用基本不等式求得2y+$\frac{a}{{2}^{y}}$ 的最小值為2$\sqrt{a}$,可得2$\sqrt{a}$≥4,從而求得a的范圍.

解答 解:(1)∵不等式f(x+$\frac{1}{2}$)≥2m+1(m>0)的解集為(-∞,-2]∪[2,+∞),
即|2(x+$\frac{1}{2}$)-1|≤2m+1 的解集為(-∞,-2]∪[2,+∞).
由|2x|≥2m+1,可得2x≥2m+1,或2x≤-2m-1,
求得 x≥m+$\frac{1}{2}$,或x≤-m-$\frac{1}{2}$,
故|2(x+$\frac{1}{2}$)-1|≤2m+1 的解集為(-∞,-m-$\frac{1}{2}$]∪[m+$\frac{1}{2}$,+∞),
故有m+$\frac{1}{2}$=2,且-m-$\frac{1}{2}$=-2,
∴m=$\frac{3}{2}$.
(2)∵不等式f(x)≤2y+$\frac{a}{{2}^{y}}$+|2x+3|,對(duì)任意的實(shí)數(shù)x,y∈R恒成立,
∴|2x-1|≤2y+$\frac{a}{{2}^{y}}$+|2x+3|恒成立,
即|2x-1|-|2x+3|≤2y+$\frac{a}{{2}^{y}}$  恒成立,
故g(x)=|2x-1|-|2x+3|的最小值小于或等于2y+$\frac{a}{{2}^{y}}$.
∵|2x-1|-|2x+3|≤|2x-1-(2x+3)|=4,
∴4≤2y+$\frac{a}{{2}^{y}}$ 恒成立,
∵2y+$\frac{a}{{2}^{y}}$≥2$\sqrt{a}$,
∴2$\sqrt{a}$≥4,
∴a≥4,
故實(shí)數(shù)a的最小值為4.

點(diǎn)評(píng) 本題主要考查絕對(duì)值的意義,絕對(duì)值不等式的解法,函數(shù)的恒成立問(wèn)題,體現(xiàn)了轉(zhuǎn)化的數(shù)學(xué)思想,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知四棱錐P-ABCD的底面為平行四邊形,高為h,過(guò)底面一邊BC作截面,與側(cè)面PAQ交于EF,若截面將棱錐分成體積相等的兩部分,
(I)求證:EF∥平面ABCD;
(II)求EF到底面ABCD的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.設(shè)直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=1+\frac{1}{2}t}\\{y=-\frac{\sqrt{3}}{2}t}\end{array}\right.$(t為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρsin2θ=4cosθ.
(1)把曲線C的極坐標(biāo)方程化為直角坐標(biāo)方程;
(2)設(shè)直線l與曲線C交于M,N兩點(diǎn),點(diǎn)A(1,0),求$\frac{1}{|MA|}$+$\frac{1}{|NA|}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.如圖,在直三棱柱ABA1-DCD1中,${D_1}C=\sqrt{2}a$,DD1=DA=DC=a,點(diǎn)E、F分別是BC、DC的中點(diǎn).
(Ⅰ)證明:AF⊥ED1;
(Ⅱ)求點(diǎn)E到平面AFD1的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.觀察下列各式:72=49,73=343,74=2401,…,則72016的末兩位數(shù)字為( 。
A.01B.43C.07D.49

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.設(shè)n∈N*且sinx+cosx=-1,請(qǐng)歸納猜測(cè)sinnx+cosnx的值.(先觀察n=1,2,3,4時(shí)的值,歸納猜測(cè)sinnx+cosnx的值,不必證明.)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.已知an=(${\frac{1}{3}}$)n,把數(shù)列{an}的各項(xiàng)排成如下的三角形:

記A(s,t)表示第s行的第t個(gè)數(shù),則A(11,12)=${({\frac{1}{3}})^{112}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知fn(x)=xn+xn-1+…+x-1,x∈(0,+∞).n是不小于2的固定正整數(shù).
(1)解不等式f2(x)≤2x;
(2)試分別證明:函數(shù)f3(x)在(0,1)內(nèi)有一個(gè)零點(diǎn),且在(0,1)內(nèi)僅有一個(gè)零點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知函數(shù)f(x)=|x-a|.
(Ⅰ)若不等式f(x)≤m的解集為[-1,5],求實(shí)數(shù)a,m的值;
(Ⅱ)當(dāng)a=2且0≤t<2時(shí),解關(guān)于x的不等式f(x)+t≥f(x+2).

查看答案和解析>>

同步練習(xí)冊(cè)答案