【題目】某學(xué)校課外興趣小組利用假期到植物園開展社會(huì)實(shí)踐活動(dòng),研究某種植物生長情況與溫度的關(guān)系.現(xiàn)收集了該種植物月生長量y(cm)與月平均氣溫x(℃)的8組數(shù)據(jù),并制成如圖所示的散點(diǎn)圖.
根據(jù)收集到的數(shù)據(jù),計(jì)算得到如下值:
18 | 12.325 | 224.04 | 235.96 |
(1)求出y關(guān)于x的線性回歸方程(最終結(jié)果的系數(shù)精確到0.01),并求溫度為28℃時(shí)月生長量y的預(yù)報(bào)值;
(2)根據(jù)y關(guān)于x的回歸方程,得到殘差圖如圖所示,分析該回歸方程的擬合效果.
附:對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計(jì)分別為,.
【答案】(1),22.77cm;(2)答案見解析.
【解析】
(1)代入公式求和,得到,再將代入計(jì)算;
(2)根據(jù)殘差圖的特征分析即可.
(1)設(shè)月生長量y與月平均氣溫x之間的線性回歸方程為.
所以
則y關(guān)于x的線性回歸方程為
當(dāng)時(shí),(cm).
所以,在氣溫在28℃時(shí),該植物月生長量的預(yù)報(bào)值為22.77cm.
(2)根據(jù)殘差圖,殘差對應(yīng)的點(diǎn)比較均勻地落在水平的帶狀區(qū)域中,且?guī)顓^(qū)域的寬度窄,該回歸方程的預(yù)報(bào)精度相應(yīng)會(huì)較高,說明擬合效果較好
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】高鐵是我國國家名片之一,高鐵的修建凝聚著中國人的智慧與汗水.如圖所示,B、E、F為山腳兩側(cè)共線的三點(diǎn),在山頂A處測得這三點(diǎn)的俯角分別為、、,計(jì)劃沿直線BF開通穿山隧道,現(xiàn)已測得BC、DE、EF三段線段的長度分別為3、1、2.
(1)求出線段AE的長度;
(2)求出隧道CD的長度.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知的內(nèi)角,,的對邊分別為,,,.設(shè)為線段上一點(diǎn),,有下列條件:
①;②;③.
請從以上三個(gè)條件中任選兩個(gè),求的大小和的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列的首項(xiàng)a1=1,前n項(xiàng)和為Sn.設(shè)λ與k是常數(shù),若對一切正整數(shù)n,均有成立,則稱此數(shù)列為“λ~k”數(shù)列.
(1)若等差數(shù)列是“λ~1”數(shù)列,求λ的值;
(2)若數(shù)列是“”數(shù)列,且an>0,求數(shù)列的通項(xiàng)公式;
(3)對于給定的λ,是否存在三個(gè)不同的數(shù)列為“λ~3”數(shù)列,且an≥0?若存在,求λ的取值范圍;若不存在,說明理由,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖①,在等腰梯形中,,,.,交于點(diǎn).將沿線段折起,使得點(diǎn)在平面內(nèi)的投影恰好是點(diǎn),如圖.
(1)若點(diǎn)為棱上任意一點(diǎn),證明:平面平面.
(2)在棱上是否存在一點(diǎn),使得三棱錐的體積為?若存在,確定點(diǎn)的位置;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】農(nóng)歷五月初五是端午節(jié),民間有吃粽子的習(xí)慣,粽子又稱粽籺,俗稱“粽子”,古稱“角黍”,是端午節(jié)大家都會(huì)品嘗的食品,傳說這是為了紀(jì)念戰(zhàn)國時(shí)期楚國大臣、愛國主義詩人屈原.如圖,平行四邊形形狀的紙片是由六個(gè)邊長為1的正三角形構(gòu)成的,將它沿虛線折起來,可以得到如圖所示粽子形狀的六面體,則該六面體的體積為____;若該六面體內(nèi)有一球,則該球體積的最大值為____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面,是直角梯形,,,且,是的中點(diǎn).
(1)求證:平面平面;
(2)若二面角的余弦值為,求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若曲線在處切線的斜率為,判斷函數(shù)的單調(diào)性;
(2)若函數(shù)有兩個(gè)零點(diǎn),求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,函數(shù),則下列說法正確的是( )
A.若,則的圖象上存在唯一一對關(guān)于原點(diǎn)對稱的點(diǎn)
B.存在實(shí)數(shù)使得的圖象上存在兩對關(guān)于原點(diǎn)對稱的點(diǎn)
C.不存在實(shí)數(shù)使得的圖象上存在兩對關(guān)于軸對稱的點(diǎn)
D.若的圖象上存在關(guān)于軸對稱的點(diǎn),則
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com