13.求由曲線y=(x+2)2與x軸及直線y=4-x所圍成的平面圖形的面積$\frac{32}{3}$.

分析 首先明確曲線與直線圍成圖形部分,利用定積分表示出來計算即可.

解答 解:由曲線y=(x+2)2與x軸及直線y=4-x所圍成的平面圖形如圖,
面積為${∫}_{-2}^{0}(x+2)^{2}dx+{∫}_{0}^{4}(4-x)dx$=$\frac{1}{3}(x+2)^{3}{|}_{-2}^{0}$+$\frac{1}{2}×4×4$=$\frac{8}{3}+8$=$\frac{32}{3}$;
故答案為:$\frac{32}{3}$.

點評 本題考查了定積分的應用求曲邊梯形的面積;關(guān)鍵是正確利用定積分表示面積,然后正確計算.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

3.“m=-3”是“直線l1:mx+(1-m)y-3=0與直線l2:(m-1)x+(2m+3)y-2=0相互垂直”的( 。
A.充分必要條件B.充分不必要條件
C.必要不充分條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.已知圓C:(x+2)2+y2=4,直線l:kx-y-2k=0(k∈R),若直線l與圓C恒有公共點,則實數(shù)k的最小值是-$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.如圖,以雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$上一點M為圓心的圓恰好與y軸相切,與x軸交于A,B兩點,其中A是雙曲線的右頂點,若△MAB是等邊三角形,則該雙曲線的離心率是( 。
A.2B.2$\sqrt{2}$C.$\sqrt{2}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.函數(shù)f(x)=(x-1)ex的單調(diào)減區(qū)間為(  )
A.(-∞,0)B.(0,1)C.(1,4)D.(0,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.已知點的極坐標是$(3,\frac{π}{4})$,則它的直角坐標是$(\frac{{3\sqrt{2}}}{2},\frac{{3\sqrt{2}}}{2})$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知$\overrightarrow{a}$=(3,4),$\overrightarrow$=(2,k).
(1)若($\overrightarrow{a}$+2$\overrightarrow$)∥($\overrightarrow{a}$-$\overrightarrow$),求k的值.
(2)若($\overrightarrow{a}$+$\overrightarrow$)⊥($\overrightarrow{a}$-$\overrightarrow$),求k的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.下列結(jié)論中正確的有(2)
(1)若α,β是第一象限角,且α<β,則sinα<sinβ;
(2)函數(shù)y=sin(πx-$\frac{π}{2}$)是偶函數(shù);
(3)函數(shù)y=sin(2x+$\frac{π}{6}$)的一個對稱中心是($\frac{π}{6}$,0);
(4)函數(shù)y=sin(2x+$\frac{π}{3}$)在[0,$\frac{π}{6}$]上是增函數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知二次函數(shù)f(x)滿足f(x+2)=f(2-x),且f(x)=0的兩根平方和為10,圖象過點(0,3).
(1)求f(5)的值;
(2)若函數(shù)f(x)在定義域[a,+∞)上f(x)≥8恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習冊答案