分析 $f(x)=\frac{3}{sinx}-\frac{cosx}{sinx}=\frac{3-cosx}{sinx}$,令$\frac{3-cosx}{sinx}=k$,則有ksinx+cosx=3⇒$\sqrt{{k}^{2}+1}sin(x+θ)=3$⇒sin(x+θ)=$\frac{3}{\sqrt{1+{k}^{2}}}≤1$即可求解.
解答 解:$f(x)=\frac{3}{sinx}-\frac{cosx}{sinx}=\frac{3-cosx}{sinx}$,
令$\frac{3-cosx}{sinx}=k$,則有ksinx+cosx=3⇒$\sqrt{{k}^{2}+1}sin(x+θ)=3$,
⇒sin(x+θ)=$\frac{3}{\sqrt{1+{k}^{2}}}≤1$,
⇒k2≥8,∴函數(shù)$f(x)=\frac{3}{sinx}-\frac{1}{tanx},x∈(0,\frac{π}{2})$的最小值為2$\sqrt{2}$,
故答案為:$2\sqrt{2}$.
點(diǎn)評(píng) 本題考查了三角函數(shù)的最值求法,考查了轉(zhuǎn)化思想,計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | S=S+xn | B. | $S=S+\frac{x_n}{n}$ | C. | S=S+n | D. | $S=S+\frac{x_n}{10}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $-\frac{{\sqrt{2}}}{2}$ | B. | $\frac{1}{2}$ | C. | $\frac{{\sqrt{2}}}{2}$ | D. | $-\frac{1}{2}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com