5.公元263年左右,我國(guó)數(shù)學(xué)家劉徽發(fā)現(xiàn)當(dāng)圓內(nèi)接正多邊形的邊數(shù)無(wú)限增加時(shí),多邊形的面積可無(wú)限接近圓的面積,并創(chuàng)立了“割圓術(shù)”,利用“割圓術(shù)”,劉徽得到了圓周率精確到小數(shù)點(diǎn)后兩位的近似值3.14,這就是著名的“徽率”,如圓是利用劉徽的“割圓術(shù)”思想設(shè)計(jì)的一個(gè)程序框圖,則輸出的值為(  )(參考數(shù)據(jù):sin15°=0.2588,sin7.50=0.1305.
A.12B.24C.48D.96

分析 根據(jù)已知中的程序框圖可得,該程序的功能是計(jì)算并輸出變量n的值,模擬程序的運(yùn)行過程,可得答案.

解答 解:第1次執(zhí)行循環(huán)體后,S=$\frac{1}{2}×6×sin60°$=$\frac{3\sqrt{3}}{2}$,不滿足退出循環(huán)的條件,則n=12,
第2次執(zhí)行循環(huán)體后,S=$\frac{1}{2}×12×sin30°$=3,不滿足退出循環(huán)的條件,則n=24,
第3次執(zhí)行循環(huán)體后,S=$\frac{1}{2}×24×sin15°$≈3.1056,不滿足退出循環(huán)的條件,則n=48,
第4次執(zhí)行循環(huán)體后,S=$\frac{1}{2}×48×sin7.5°$≈3.132,滿足退出循環(huán)的條件,
故輸出的n值為48,
故選:C.

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是程序框圖,當(dāng)程序的運(yùn)行次數(shù)不多或有規(guī)律時(shí),可采用模擬運(yùn)行的辦法解答.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)$f(x)=\frac{lnx}{x+1}-\frac{{2{f^'}(1)}}{x}$.
(1)求函數(shù)f(x)在點(diǎn)(1,f(1))處的切線方程;
(2)證明:當(dāng)0<x<1時(shí),(x-1)f(x)<lnx.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知x+y=8,xy=9且x<y,求$\frac{{{x^{\frac{1}{2}}}+{y^{\frac{1}{2}}}}}{{{x^{\frac{1}{2}}}-{y^{\frac{1}{2}}}}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.“b>1”是“直線l:x+3y-1=0與雙曲線$\frac{x^2}{4}-\frac{y^2}{b^2}=1({b>0})$的左支有交點(diǎn)”的(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知A,B,C,D是拋物線y2=8x上的點(diǎn),F(xiàn)是拋物線的焦點(diǎn),且$\overrightarrow{FA}+\overrightarrow{FB}+\overrightarrow{FC}+\overrightarrow{FD}=\overrightarrow 0$,則$|\overrightarrow{FA}|+|\overrightarrow{FB}|+|\overrightarrow{FC}|+|\overrightarrow{FD}|$的值為( 。
A.2B.4C.8D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.把曲線的極坐標(biāo)方程$ρ=\sqrt{2}sin({\frac{π}{4}-θ})$化為曲線的標(biāo)準(zhǔn)方程為${({x-\frac{1}{2}})^2}+{({y+\frac{1}{2}})^2}=\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.定義在(0,+∞)上的單調(diào)函數(shù)f(x)滿足對(duì)一切x>0總有f[f(x)-log2x]=3,則g(x)=f(x)+x-4的零點(diǎn)個(gè)數(shù)是1(個(gè)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.如圖,已知正方體ABCD-A1B1C1D1的棱長(zhǎng)為2,E、F分別是A1B1、CC1的中點(diǎn),過D1、E、F作平面D1EGF交BB1于G.
(1)求證:EG∥D1F;
(2)求銳二面角C1-D1E-F的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知xlnx-(1+a)x+1≥0對(duì)任意$x∈[\frac{1}{2},2]$恒成立,則實(shí)數(shù)a的最大值為( 。
A.0B.1C.2D.3

查看答案和解析>>

同步練習(xí)冊(cè)答案