1.設(shè)集合A={x|x2+2x-3≤0},B={x|x2-2x<0},則A∪B=(  )
A.(0,1]B.[0,1)C.[-3,2)D.(-3,2]

分析 由一元二次不等式的解法求出A、B,由并集的運(yùn)算求出A∪B.

解答 解:∵集合A={x|x2+2x-3≤0}={x|-3≤x≤1},
B={x|x2-2x<0}={x|0<x<2},
∴A∪B={x|-3≤x<2}=[-3,2),
故選:C.

點(diǎn)評(píng) 本題考查了并集及其運(yùn)算,熟練掌握并集的運(yùn)算是解本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.在抗菌素的生產(chǎn)中,需要培養(yǎng)優(yōu)良菌株.若一只菌株變成優(yōu)良菌株的概率是0.05,那么從大批經(jīng)過誘變處理的菌株中,選擇多少只進(jìn)行培養(yǎng),才能有95%的把握至少選到一只優(yōu)良菌株?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知A,B,C三點(diǎn)的坐標(biāo)分別為A(2,0),B(0,2),C(cosα,sinα),其中α∈(-$\frac{π}{2}$,$\frac{π}{2}$).
(1)若$|{\overrightarrow{AC}}|=|{\overrightarrow{BC}}|$,求角α的值;
(2)若$\overrightarrow{AC}\;•\;\overrightarrow{BC}=-1$,求sin(α+$\frac{π}{4}$)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知定義在R上的函數(shù)f(x)滿足(x+6)+f(x)=0,函數(shù)y=f(x-1)關(guān)于點(diǎn)(1,0)對(duì)稱,則f(2016)=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.下列四個(gè)函數(shù)中(1)f(x)=tan($\frac{x}{2}$-$\frac{π}{3}$);(2)f(x)=|sinx|;(3)f(x)=sinx•cosx;(4)f(x)=cosx+sinx最小正周期為π的有( 。
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.設(shè)a,b,c為正實(shí)數(shù),且滿足a-3b+2c=0,則$\frac{^{2}}{ac}$的最小值是$\frac{8}{9}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.某玩具生產(chǎn)公司每天計(jì)劃生產(chǎn)衛(wèi)兵、騎兵、傘兵這三種玩具共100個(gè),生產(chǎn)一個(gè)衛(wèi)兵需5min,生產(chǎn)一個(gè)騎兵需7min,生產(chǎn)一個(gè)傘兵需4min,已知總生產(chǎn)時(shí)間不超過10h,若生產(chǎn)一個(gè)衛(wèi)兵可利潤5元,生產(chǎn)一個(gè)騎兵可獲利潤6元,生產(chǎn)一個(gè)傘兵可獲利潤3元,怎樣分配生產(chǎn)任務(wù)才能使每天的利潤最大,最大利潤是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知|$\overrightarrow{AB}$|=1,|$\overrightarrow{AC}$|=$\sqrt{5}$,|$\overrightarrow{AB}$+$\overrightarrow{AC}$|=|$\overrightarrow{BC}$|,則$\frac{\overrightarrow{AB}•\overrightarrow{BC}}{|\overrightarrow{BC}|}$=( 。
A.$\frac{\sqrt{6}}{6}$B.-$\frac{\sqrt{6}}{6}$C.1D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.下面是某港口一天中部分時(shí)刻測量得到的水深表(時(shí)間單位:小時(shí),水深單位:米)
時(shí)刻0:003:006:009:0012:0015:0018:0021:0024:00
水深6.58.56.54.56.58.56.54.56.5
若該港口水深關(guān)于時(shí)間的函數(shù)可以用y=Asin(ωx+φ)+B(A>0,ω>0,|φ|<$\frac{π}{2}$),x∈[0,24)近似地表示:
(1)試求出函數(shù)的解析式;
(2)某船吃水深度(船底與水面之間的距離)是4米,安全條例規(guī)定要有大于或等于3.5米的安全間隙(船底與海洋底之間的距離),問一天中在x∈[0,12]時(shí)間段,若要使此船連續(xù)停泊該港口時(shí)間最長,此船應(yīng)何時(shí)進(jìn)入該港口、何時(shí)離開該港口?

查看答案和解析>>

同步練習(xí)冊(cè)答案