9.已知黃河游覽區(qū)有兩艘游船,兩艘游船每天上午11點(diǎn)出發(fā),下午3點(diǎn)至5點(diǎn)之間返回碼頭,假如碼頭只有一個(gè)泊位,每艘游船需要?看a頭15分鐘游客下完后即駛離碼頭,每艘油船返回時(shí)在下午3點(diǎn)至5點(diǎn)之間的任何一時(shí)刻停靠碼頭是等可能的,求你乘坐一艘游船游覽黃河游覽區(qū),下午返回碼頭時(shí),停船的泊位是空的概率.

分析 根據(jù)題意先列出全部結(jié)果所構(gòu)成的區(qū)域Ω={(x,y)|0≤x≤8,0≤y≤8},再求出“我乘坐的游船下午返回時(shí),碼頭是空的”為事件A對(duì)應(yīng)的概率即可.

解答
解:設(shè)我乘坐的游船下午x時(shí)刻停靠碼頭,另一艘游船下午y時(shí)刻?看a頭,下午3點(diǎn)記為0時(shí)刻,15分鐘為1個(gè)時(shí)間單位,到下午5點(diǎn)共8個(gè)時(shí)間單位,作圖如下:
隨機(jī)試驗(yàn)的全部結(jié)果所構(gòu)成的區(qū)域Ω={(x,y)|0≤x≤8,0≤y≤8},
則SΩ=64,
設(shè)“我乘坐的游船下午返回時(shí),碼頭是空的”為事件A,
則A={(x,y)|y>x或x-y>1,(x,y)∈Ω},${S_A}=\frac{1}{2}×8×8+\frac{1}{2}×7×7=\frac{113}{2}$,
所以,$P(A)=\frac{S_A}{S_Ω}=\frac{113}{128}$.

點(diǎn)評(píng) 本題主要考查幾何概型的概率求法,屬于中等題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.已知A(2,3),B(1,4)且$\frac{1}{2}\overrightarrow{AB}=({sinα,cosβ}),({α,β∈({-\frac{π}{2},0})})$,則α+β=$\frac{π}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.某校從高二年級(jí)學(xué)生中隨機(jī)抽取60名學(xué)生,將其期中考試的政治成績(jī)(均為整數(shù))分成六段:[40,50),[50,60),…,[90,100]后得到如下頻率分布直方圖.
(Ⅰ)求分?jǐn)?shù)在[70,80)內(nèi)的頻率;
(Ⅱ)根據(jù)頻率分布直方圖,估計(jì)該校高二年級(jí)學(xué)生期中考試政治成績(jī)的平均分、眾數(shù)、中位數(shù);(小數(shù)點(diǎn)后保留一位有效數(shù)字)
(Ⅲ)用分層抽樣的方法在各分?jǐn)?shù)段的學(xué)生中抽取一個(gè)容量為20的樣本,則各分?jǐn)?shù)段抽取的人數(shù)分別是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知f(x)=x-$\frac{a}{x}$(a>0),g(x)=2lnx.
(1)若對(duì)[1,+∞)內(nèi)的一切實(shí)數(shù)x,不等式f(x)≥g(x)恒成立,求實(shí)數(shù)a的取值范圍;
(2)當(dāng)a=1時(shí),求最大的正整數(shù)k,使得對(duì)[e,3](e=2.71828…是自然對(duì)數(shù)的底數(shù))內(nèi)的任意k個(gè)實(shí)數(shù)x1,x2,…,xk都有f(x1)+f(x2)+…+f(xk-1)≤16g(xk)成立;
(3)求證:$\sum_{i=1}^{n}\frac{4i}{4{i}^{2}-1}$>ln(2n+1),(n∈N*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.已知函數(shù)f(x)=$\left\{{\begin{array}{l}{{f_1}(x),x∈[0,\frac{1}{2})}\\{{f_2}(x),x∈[\frac{1}{2},1]}\end{array}}$,其中f1(x)=-2(x-$\frac{1}{2}$)2+1;f2(x)=-2x+2,若x0∈[0,$\frac{1}{2}$),x1=f(x0),f(x1)=x0,則x0=$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}+2(x<0)}\\{(a-3)x+4a(x≥0)}\end{array}\right.$,在R上是減函數(shù),則a的取值范圍是( 。
A.(-∞,$\frac{1}{2}$]B.(0,1)C.[$\frac{1}{2}$,3)D.(0,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.已知f(x)=4${\;}^{(co{s^2}x)}}$+4${\;}^{(si{n^2}x)}}$,則f(x)的最小值等于4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.f(x)的定義域?yàn)閇-2,3],則f(2x+1)的定義域?yàn)閇-$\frac{3}{2}$,1](用區(qū)間表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.已知△ABC中,B=30°,AC=1,AB=$\sqrt{3}$,則邊長(zhǎng)BC為1或2.

查看答案和解析>>

同步練習(xí)冊(cè)答案