【題目】中國武漢于2019年10月18日至2019年10月27日成功舉辦了第七屆世界軍人運動會.來自109個國家的9300余名運動員同臺競技.經(jīng)過激烈的角逐,獎牌榜的前3名如下:
國家 | 金牌 | 銀牌 | 銅牌 | 獎牌總數(shù) |
中國 | 133 | 64 | 42 | 239 |
俄羅斯 | 51 | 53 | 57 | 161 |
巴西 | 21 | 31 | 36 | 88 |
某數(shù)學愛好者采用分層抽樣的方式,從中國和巴西獲得金牌選手中抽取了22名獲獎代表.從這22名中隨機抽取3人, 則這3人中中國選手恰好1人的概率為( )
A.B.C.D.
科目:高中數(shù)學 來源: 題型:
【題目】隨著科技的發(fā)展,網(wǎng)購已經(jīng)逐漸融入了人們的生活.在家里面不用出門就可以買到自己想要的東西,在網(wǎng)上付款即可,兩三天就會送到自己的家門口,如果近的話當天買當天就能送到,或者第二天就能送到,所以網(wǎng)購是非常方便的購物方式.某公司組織統(tǒng)計了近五年來該公司網(wǎng)購的人數(shù)(單位:人)與時間(單位:年)的數(shù)據(jù),列表如下:
1 | 2 | 3 | 4 | 5 | |
24 | 27 | 41 | 64 | 79 |
(1)依據(jù)表中給出的數(shù)據(jù),是否可用線性回歸模型擬合與的關(guān)系,請計算相關(guān)系數(shù)并加以說明(計算結(jié)果精確到0.01).(若,則線性相關(guān)程度很高,可用線性回歸模型擬合)
附:相關(guān)系數(shù)公式 ,參考數(shù)據(jù).
(2)建立關(guān)于的回歸方程,并預(yù)測第六年該公司的網(wǎng)購人數(shù)(計算結(jié)果精確到整數(shù)).
(參考公式: ,)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),其中,為自然對數(shù)的底數(shù).
(1)當時,證明:對;
(2)若函數(shù)在上存在極值,求實數(shù)的取值范圍。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某中學將100名高一新生分成水平相同的甲,乙兩個“平行班”,每班50人.陳老師采用A,B兩種不同的教學方式分別在甲,乙兩個班級進行教改實驗.為了解教學效果,期末考試后,陳老師分別從兩個班級中各隨機抽取20名學生的成績進行統(tǒng)計,作出莖葉圖如下,計成績不低于90分者為“成績優(yōu)秀”.
(1)從乙班樣本的20個個體中,從不低于86分的成績中隨機抽取2個,求抽出的兩個均“成績優(yōu)秀”的概率;
(2)由以上統(tǒng)計數(shù)據(jù)填寫下面2x2列聯(lián)表,并判斷是否有的把握認為“成績優(yōu)秀”與教學方式有關(guān).
甲班(A方式) | 乙班(B方式) | 總計 | |
成績優(yōu)秀 | |||
成績不優(yōu)秀 | |||
總計 |
附:
P( | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 |
k | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | /tr>
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系xOy下,曲線C1的參數(shù)方程為( 為參數(shù)),曲線C1在變換T:的作用下變成曲線C2.
(1)求曲線C2的普通方程;
(2)若m>1,求曲線C2與曲線C3:y=m|x|-m的公共點的個數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如果無窮數(shù)列{an}的所有項恰好構(gòu)成全體正整數(shù)的一個排列,則稱數(shù)列{an}具有性質(zhì)P.
(Ⅰ)若an(k∈N*),判斷數(shù)列{an}是否具有性質(zhì)P,并說明理由,
(Ⅱ)若數(shù)列{an}具有性質(zhì)P,求證:{an}中一定存在三項ai,aj,ak(i<j<k)構(gòu)成公差為奇數(shù)的等差數(shù)列;
(Ⅲ)若數(shù)列{an}具有性質(zhì)P,則{an}中是否一定存在四項ai,aj,ak,al,(i<j<k<l)構(gòu)成公差為奇數(shù)的等差數(shù)列?證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓:經(jīng)過點,右焦點到直線的距離為.
(1)求橢圓的標準方程;
(2)定義為,兩點所在直線的斜率,若四邊形為橢圓的內(nèi)接四邊形,且,相交于原點,且,求證:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】定義:給定整數(shù)i,如果非空集合滿足如下3個條件:
①;②;③,若,則.
則稱集合A為“減i集”
(1)是否為“減0集”?是否為“減1集”?
(2)證明:不存在“減2集”;
(3)是否存在“減1集”?如果存在,求出所有“減1集”;如果不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com