【題目】在直角坐標(biāo)系xOy下,曲線C1的參數(shù)方程為( 為參數(shù)),曲線C1在變換T:的作用下變成曲線C2.
(1)求曲線C2的普通方程;
(2)若m>1,求曲線C2與曲線C3:y=m|x|-m的公共點(diǎn)的個(gè)數(shù).
【答案】(1).(2)4
【解析】
(1)先求出曲線C1的普通方程,再根據(jù)圖象變換可求出曲線C2的普通方程;
(2)由題意可得上的點(diǎn)在橢圓E:外,當(dāng)時(shí),曲線的方程化為,聯(lián)立直線與橢圓的方程,由韋達(dá)定理可得當(dāng)時(shí),曲線C2與曲線C3有且只有兩個(gè)不同的公共點(diǎn),又曲線C2與曲線C3都關(guān)于y軸對(duì)稱,從而可得結(jié)論.
解:(1)因?yàn)榍C1的參數(shù)方程為
所以曲線C1的普通方程為,
將變換T:即代入,得,
所以曲線C2的普通方程為.
(2)因?yàn)?/span>m>1,所以上的點(diǎn)在在橢圓E:外,
當(dāng)x>0時(shí),曲線的方程化為,
代入,得,(*)
因?yàn)?/span>,
所以方程(*)有兩個(gè)不相等的實(shí)根x1,x2,
又,,所以x1>0,x2>0,
所以當(dāng)x>0時(shí),曲線C2與曲線C3有且只有兩個(gè)不同的公共點(diǎn),
又因?yàn)榍C2與曲線C3都關(guān)于y軸對(duì)稱,
所以當(dāng)x<0時(shí),曲線C2與曲線C3有且只有兩個(gè)不同的公共點(diǎn),
綜上,曲線C2與曲線C3:y=m|x|-m的公共點(diǎn)的個(gè)數(shù)為4.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《中華人民共和國(guó)道路交通安全法》第條的相關(guān)規(guī)定:機(jī)動(dòng)車行經(jīng)人行道時(shí),應(yīng)當(dāng)減速慢行;遇行人正在通過人行道,應(yīng)當(dāng)停車讓行,俗稱“禮讓斑馬線”《中華人民共和國(guó)道路交通安全法》第條規(guī)定:對(duì)不禮讓行人的駕駛員處以扣分,罰款元的處罰.下表是某市一主干路口監(jiān)控設(shè)備所抓拍的個(gè)月內(nèi)駕駛員不“禮讓斑馬線”行為統(tǒng)計(jì)數(shù)據(jù):
月份 | |||||
不“禮讓斑馬線”駕駛員人數(shù) |
(1)請(qǐng)利用所給數(shù)據(jù)求不“禮讓斑馬線”駕駛員人數(shù)與月份之間的回歸直線方程,并預(yù)測(cè)該路口月份的不“禮讓斑馬線”駕駛員人數(shù);
(2)若從表中月份和月份的不“禮讓斑馬線”駕駛員中,采用分層抽樣方法抽取一個(gè)容量為的樣本,再?gòu)倪@人中任選人進(jìn)行交規(guī)調(diào)查,求抽到的兩人恰好來自同一月份的概率.
參考公式:,.
參考數(shù)據(jù):.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠在2016年的“減員增效”中對(duì)部分人員實(shí)行分流,規(guī)定分流人員第一年可以到原單位領(lǐng)取工資的100%,從第二年起,以后每年只能在原單位按上一年的領(lǐng)取工資,該廠根據(jù)分流人員的技術(shù)特長(zhǎng),計(jì)劃創(chuàng)辦新的經(jīng)濟(jì)實(shí)體,該經(jīng)濟(jì)實(shí)體預(yù)計(jì)第一年屬投資階段,第二年每人可獲得元收入,從第三年起每人每年的收入可在上一年的基礎(chǔ)上遞增50%,如果某人分流后工資的收入每年元,分流后進(jìn)入新經(jīng)濟(jì)實(shí)體,第年的收入為元;
(1)求的通項(xiàng)公式;
(2)當(dāng)時(shí),是否一定可以保證這個(gè)人分流一年后的收入永遠(yuǎn)超過分流前的年收入?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在多面體ABCDEF中,底面ABCD是邊長(zhǎng)為2的菱形,∠BAD=60°,四邊形BDEF是矩形,平面BDEF⊥平面ABCD,DE=2,M為線段BF上一點(diǎn),且DM⊥平面ACE.
(1)求BM的長(zhǎng);
(2)求二面角A﹣DM﹣B的余弦值的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】中國(guó)武漢于2019年10月18日至2019年10月27日成功舉辦了第七屆世界軍人運(yùn)動(dòng)會(huì).來自109個(gè)國(guó)家的9300余名運(yùn)動(dòng)員同臺(tái)競(jìng)技.經(jīng)過激烈的角逐,獎(jiǎng)牌榜的前3名如下:
國(guó)家 | 金牌 | 銀牌 | 銅牌 | 獎(jiǎng)牌總數(shù) |
中國(guó) | 133 | 64 | 42 | 239 |
俄羅斯 | 51 | 53 | 57 | 161 |
巴西 | 21 | 31 | 36 | 88 |
某數(shù)學(xué)愛好者采用分層抽樣的方式,從中國(guó)和巴西獲得金牌選手中抽取了22名獲獎(jiǎng)代表.從這22名中隨機(jī)抽取3人, 則這3人中中國(guó)選手恰好1人的概率為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓E:y2=1(m>1)的離心率為,過點(diǎn)P(1,0)的直線與橢圓E交于A,B不同的兩點(diǎn),直線AA0垂直于直線x=4,垂足為A0.
(Ⅰ)求m的值;
(Ⅱ)求證:直線A0B恒過定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】己知{an}是等差數(shù)列,其前n項(xiàng)和Sn=n2﹣2n+b﹣1,{bn}是等比數(shù)列,其前n項(xiàng)和Tn,則數(shù)列{ bn +an}的前5項(xiàng)和為( 。
A.37B.-27C.77D.46
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】廣東省2021年高考將實(shí)行“”模式,其最大特點(diǎn)就是取消文理科,除語(yǔ)文、數(shù)學(xué)、外語(yǔ)之外,從物理、歷史這2科中自由選擇一門科目;化學(xué)、生物、政治、地理這4科中自由選擇兩門科目作為選考科目.某研究機(jī)構(gòu)為了了解學(xué)生對(duì)全理(選擇物理、化學(xué)、生物)的選擇是否與性別有關(guān),從某學(xué)校高一年級(jí)的學(xué)生中隨機(jī)抽取男生、女生個(gè)25人進(jìn)行模擬選科.經(jīng)統(tǒng)計(jì),選擇全理的人數(shù)比不選全理的人數(shù)多10人.
(1)請(qǐng)完成下面的列聯(lián)表:
選擇全理 | 不選擇全理 | 合計(jì) | |
男生 | 5 | ||
女生 | |||
合計(jì) |
(2)估計(jì)有多大把握認(rèn)為選擇全理與性別有關(guān),并說明理由;
(3)現(xiàn)從這50名學(xué)生中已經(jīng)選取了男生3名,女生2名進(jìn)行座談,從這5人中抽取2名代表作問卷調(diào)查,求至少抽到一名女生的概率.
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.076 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
附:,其中.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校開設(shè)了素描攝影剪紙書法四門選修課,要求每位同學(xué)都要選擇其中的兩門課程.已知甲同學(xué)選了素描,乙與甲沒有相同的課程,丙與甲恰有一門課程相同,丁與丙沒有相同課程.則以下說法錯(cuò)誤的是( )
A.丙有可能沒有選素描B.丁有可能沒有選素描
C.乙丁可能兩門課都相同D.這四個(gè)人里恰有2個(gè)人選素描
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com