分析 由0<cos1<1,得外函數(shù)y=logcos1t在定義域內(nèi)單調(diào)遞減,再求出內(nèi)函數(shù)t=sinx的減區(qū)間,取使t大于0的部分得答案.
解答 解:令t=sinx,
∵0<cos1<1,
∴外函數(shù)y=logcos1t在定義域內(nèi)單調(diào)遞減,
又sinx>0,
∴當(dāng)x∈[$\frac{π}{2}+2kπ,π+2kπ$)(k∈Z)時,內(nèi)函數(shù)t=sinx大于0且單調(diào)遞減,
∴函數(shù)f(x)=logcos1(sinx)的單調(diào)遞增區(qū)間是[$\frac{π}{2}+2kπ,π+2kπ$)(k∈Z),
故答案為:[$\frac{π}{2}+2kπ,π+2kπ$)(k∈Z).
點評 本題主要考查了復(fù)合函數(shù)的單調(diào)性以及單調(diào)區(qū)間的求法.對應(yīng)復(fù)合函數(shù)的單調(diào)性,一要注意先確定函數(shù)的定義域,二要利用復(fù)合函數(shù)與內(nèi)層函數(shù)和外層函數(shù)單調(diào)性之間的關(guān)系進(jìn)行判斷,判斷的依據(jù)是“同增異減”,是中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分而不必要條件 | B. | 必要而不充分條件 | ||
C. | 充分必要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | nn | B. | (n-1)n | C. | nn-1 | D. | xn |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 45 | B. | 90 | C. | 20 | D. | 10 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 存在定義在[-1,1]上的函數(shù)f(x)使得對任意實數(shù)y有等式f(cosy)=cos2y成立 | |
B. | 存在定義在[-1,1]上的函數(shù)f(x)使得對任意實數(shù)y有等式f(siny)=sin2y成立 | |
C. | 存在定義在[-1,1]上的函數(shù)f(x)使得對任意實數(shù)y有等式f(cosy)=cos3y成立 | |
D. | 存在定義在[-1,1]上的函數(shù)f(x)使得對任意實數(shù)y有等式f(siny)=sin3y成立 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 等腰三角形 | B. | 直角三角形 | ||
C. | 等腰或直角三角形 | D. | 等腰直角三角形 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com