分析 (1)設(shè)BD中點(diǎn)為O,連接OC,OE,則CO⊥BD,CE⊥BD,于是BD⊥平面OCE,從而BD⊥OE,即OE是BD的垂直平分線,問題解決;
(2)M為線段AE的中點(diǎn)時,DM∥平面EBC,
證法一:取AB中點(diǎn)N,連接MN,DN,MN,易證MN∥平面BEC,DN∥平面BEC,由面面平行的判定定理即可證得平面DMN∥平面BEC,又DM?平面DMN,于是DM∥平面BEC;
證法二:延長AD,BC交于點(diǎn)F,連接EF,易證AB=$\frac{1}{2}$AF,D為線段AF的中點(diǎn),連接DM,則DM∥EF,由線面平行的判定定理即可證得結(jié)論
解答 證明:(1)設(shè)BD中點(diǎn)為O,連接OC,OE,則由BC=CD知,CO⊥BD,
又已知CE⊥BD,EC∩CO=C,
所以BD⊥平面OCE.
所以BD⊥OE,即OE是BD的垂直平分線,
所以BE=DE.
(2)M為線段AE的中點(diǎn)時,DM∥平面EBC,理由如下:
證法一:
取AB中點(diǎn)N,連接MN,DN,
∵M(jìn)是AE的中點(diǎn),
∴MN∥BE,又MN?平面BEC,BE?平面BEC,
∴MN∥平面BEC,
∵△ABD是等邊三角形,
∴∠BDN=30°,又CB=CD,∠BCD=120°,
∴∠CBD=30°,
∴ND∥BC,
又DN?平面BEC,BC?平面BEC,
∴DN∥平面BEC,又MN∩DN=N,故平面DMN∥平面BEC,又DM?平面DMN,
∴DM∥平面BEC
證法二:延長AD,BC交于點(diǎn)F,連接EF,
∵CB=CD,∠BCD=120°,
∴∠CBD=30°,
∵△ABD是等邊三角形,
∴∠BAD=60°,∠ABC=90°,因此∠AFB=30°,
∴AB=$\frac{1}{2}$AF,
又AB=AD,
∴D為線段AF的中點(diǎn),連接DM,DM∥EF,又DM?平面BEC,EF?平面BEC,
∴DM∥平面BEC.
點(diǎn)評 本題考查直線與平面平行的判定,考查線面垂直的判定定理與面面平行的判定定理的應(yīng)用,著重考查分析推理能力與表達(dá)、運(yùn)算能力,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | $\sqrt{2}$ | C. | $\frac{4}{3}$ | D. | $\frac{5}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{\sqrt{2}-1}{2}$ | B. | $\frac{\sqrt{3}-1}{3}$ | C. | $\frac{1}{3}$ | D. | $\frac{\sqrt{3}-1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com