【題目】某高校在2017年的自主招生考試成績(jī)中隨機(jī)抽取100名學(xué)生的筆試成績(jī),按成績(jī)分組,得到的頻率分布表如表:

組號(hào)

分組

頻率

1

2

3

4

5

求出頻率分布表中處應(yīng)填寫的數(shù)據(jù),并完成如圖所示的頻率分布直方圖;

根據(jù)直方圖估計(jì)這次自主招生考試筆試成績(jī)的平均數(shù)和中位數(shù)結(jié)果都保留兩位小數(shù)

【答案】(1), 頻率分布直方圖見解析,(2) 平均數(shù)為172.25,中位數(shù)為170.10

【解析】

1)由表中所有頻率和為1可求得處頻率,由頻率分布圖的作法作出頻率分布直方圖;

(2)由頻率分布直方圖,取各小矩形中點(diǎn)處值作為此組的估計(jì)值進(jìn)行計(jì)算可得平均值,中位數(shù)是把所有小矩形面積等分的那點(diǎn)的值.

1)由頻率分布表的性質(zhì)得:處應(yīng)填寫的數(shù)據(jù)為:

完成頻率分布直方圖如下:

2)平均數(shù)為:

,解得

中位數(shù)為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,橢圓的參數(shù)方程為為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為.

(1)求橢圓的極坐標(biāo)方程和直線的直角坐標(biāo)方程;

(2)若點(diǎn)的極坐標(biāo)為,直線與橢圓相交于兩點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,橢圓經(jīng)過點(diǎn).

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)設(shè)點(diǎn)是橢圓上的任意一點(diǎn),射線與橢圓交于點(diǎn),過點(diǎn)的直線與橢圓有且只有一個(gè)公共點(diǎn),直線與橢圓交于兩個(gè)相異點(diǎn),證明:面積為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為中心,以坐標(biāo)軸為對(duì)稱軸的幫圓C經(jīng)過點(diǎn)M(2,1),N.

(1)求橢圓C的標(biāo)準(zhǔn)方程;

(2)經(jīng)過點(diǎn)M作傾斜角互補(bǔ)的兩條直線,分別與橢圓C相交于異于M點(diǎn)的A,B兩點(diǎn),當(dāng)△AMB面積取得最大值時(shí),求直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在中,兩點(diǎn)分別在上,且使. 現(xiàn)將沿折起,使平面平面,得到四棱錐 (如圖2

1)證明:平面;

2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,設(shè)橢圓的左焦點(diǎn)為,左準(zhǔn)線為為橢圓上任意一點(diǎn),直線,垂足為,直線交于點(diǎn)

(1)若,且,直線的方程為.①求橢圓的方程;②是否存在點(diǎn),使得?若存在,求出點(diǎn)的坐標(biāo);若不存在,說明理由.

(2)設(shè)直線與圓交于兩點(diǎn),求證:直線均與圓相切.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱柱,側(cè)面底面ABC, ,,OAC中點(diǎn).


(1)求直線與平面所成角的正弦值;
(2)上是否存在一點(diǎn)E,使得平面,若不存在,說明理由;若存在,確定點(diǎn)E的位置.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某社區(qū)有居民人,為了迎接第十一個(gè)“全民健身日”的到來,居委會(huì)從中隨機(jī)抽取了名居民,統(tǒng)計(jì)了他們本月參加戶外運(yùn)動(dòng)時(shí)間(單位:小時(shí))的數(shù)據(jù),并將數(shù)據(jù)進(jìn)行整理,分為組:,,,,得到如圖所示的頻率分布直方圖.

(Ⅰ)試估計(jì)該社區(qū)所有居民中,本月戶外運(yùn)動(dòng)時(shí)間不小于小時(shí)的人數(shù);

(Ⅱ)已知這名居民中恰有名女性的戶外運(yùn)動(dòng)時(shí)間在,現(xiàn)從戶外運(yùn)動(dòng)時(shí)間在的樣本對(duì)應(yīng)的居民中隨機(jī)抽取人,求至少抽到名女性的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)在拋物線上.

1)求的方程;

2)過上的任一點(diǎn)的頂點(diǎn)不重合)作軸于,試求線段中點(diǎn)的軌跡方程;

3)在上任取不同于點(diǎn)的點(diǎn),直線與直線交于點(diǎn),過點(diǎn)軸的垂線交拋物線于點(diǎn),求面積的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案