【題目】針對時下的“抖音熱”某校團委對“學(xué)生性別和喜歡抖音是否有關(guān)”作了一次調(diào)查,其中被調(diào)查的男女生人數(shù)相同,男生喜歡抖音的人數(shù)占男生人數(shù)的,女生喜歡抖音的人數(shù)占女生人數(shù),若有的把握認為是否喜歡抖音和性別有關(guān)則調(diào)查人數(shù)中男生可能有( )人
附表:
0.050 | 0.010 | |
3.841 | 6.635 |
附:
A.20B.40C.60D.80
【答案】C
【解析】
設(shè)男女生人數(shù)共有n人,根據(jù)男女生人數(shù)相同,男生喜歡抖音的人數(shù)占男生人數(shù)的,女生喜歡抖音的人數(shù)占女生人數(shù),算出a,b,c,d的值,代入公式解得,然后根據(jù)有的把握認為是否喜歡抖音和性別有關(guān),則有求解.
設(shè)男女生人數(shù)共有n人,則男生喜歡歡抖音的人數(shù)有,男生不喜歡歡抖音的人數(shù)有,
女生喜歡歡抖音的人數(shù)有,男生不喜歡歡抖音的人數(shù)有,
所以,
因為有的把握認為是否喜歡抖音和性別有關(guān),
所以,
解得,
所以,
所以調(diào)查人數(shù)中男生可能有60人.
故選:C
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知離心率為的橢圓的左頂點為,左焦點為,及點,且、、成等比數(shù)列.
(1)求橢圓的方程;
(2)斜率不為的動直線過點且與橢圓相交于、兩點,記,線段上的點滿足,試求(為坐標原點)面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標系中,曲線的參數(shù)方程為(為參數(shù)),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.
(1)求曲線的極坐標方程和的直角坐標方程;
(2)直線與曲線,分別交于第一象限內(nèi),兩點,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地區(qū)有小學(xué)21所,中學(xué)14所,大學(xué)7所,現(xiàn)采用分層抽樣的方法從這些學(xué)校中抽取6所學(xué)校對學(xué)生進行視力調(diào)查,若從抽取的6所學(xué)校中隨機抽取2所學(xué)校做進一步數(shù)據(jù)分析.
(1)求應(yīng)從小學(xué)、中學(xué)、大學(xué)中分別抽取的學(xué)校數(shù)目;
(2)求抽取的6所學(xué)校中的2所學(xué)校均為小學(xué)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)當 時,求函數(shù)圖象在點處的切線方程;
(2)當時,討論函數(shù)的單調(diào)性;
(3)是否存在實數(shù),對任意,且有恒成立?若存在,求出的取值范圍;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標系中,曲線的參數(shù)方程為(為參數(shù)),為曲線上一動點,動點滿足.
(1)求點軌跡的直角坐標方程;
(2)以坐標原點為極點,軸正半軸為極軸建立極坐標系,曲線的極坐標方程為,是上一個動點,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C:的離心率為,的面積為2.
(I)求橢圓C的方程;
(II)設(shè)M是橢圓C上一點,且不與頂點重合,若直線與直線交于點P,直線與直線交于點Q.求證:△BPQ為等腰三角形.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=log3(ax+b)的圖象經(jīng)過點A(2,1)和B(5,2),an=an+b(n∈N*).
(1)求{an};
(2)設(shè)數(shù)列{an}的前n項和為Sn,bn,求{bn}的前n項和Tn.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com