【題目】的內角,,的對邊分別為,,,已知 ,.

(1)求角

(2)若點滿足,求的長.

【答案】(1);(2)

【解析】

1)解法一:對條件中的式子利用正弦定理進行邊化角,得到的值,從而得到角的大小;解法二:對對條件中的式子利用余弦定理進行角化邊,得到的值,從而得到角的大;解法三:利用射影定理相關內容進行求解.

2)解法一:在中把邊和角都解出來,然后在中利用余弦定理求解;解法二:在中把邊和角都解出來,然后在中利用余弦定理求解;解法三:將表示,平方后求出的模長.

(1)【解法一】由題設及正弦定理得

,

所以.

由于,則.

又因為,

所以.

【解法二】

由題設及余弦定理可得,

化簡得.

因為,所以.

又因為,

所以.

【解法三】

由題設

結合射影定理,

化簡可得.

因為.所以.

又因為

所以.

(2)【解法1】由正弦定理易知,解得.

又因為,所以,即.

中,因為,,所以,

所以在中,,

由余弦定理得,

所以.

【解法2

中,因為,,所以.

由余弦定理得.

因為,所以.

中,,,

由余弦定理得

所以.

【解法3

中,因為,所以.

因為,所以.

所以.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知橢圓的長軸長為,過點的直線軸垂直,橢圓的離心率, 為橢圓的左焦點,.

求此橢圓的方程;

是此橢圓上異于的任意一點, , 為垂足,延長到點使得.連接并延長,交直線于點的中點,判定直線與以為直徑的圓的位置關系.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)過原點作函數(shù)的切線,求的方程;

(Ⅱ)若對于任意恒成立,試確定實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知標準方程下的橢圓的焦點在軸上,且經過點,它的一個焦點恰好與拋物線的焦點重合.橢圓的上頂點為,過點的直線交橢圓于兩點,連接、,記直線的斜率分別為.

(1)求橢圓的標準方程;

(2)求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(本小題共13分)

已知, 1, ,對于, 表示UV中相對應的元素不同的個數(shù).

)令,存在m,使得,寫出m的值;

)令,若,求證: ;

)令,若,求所有之和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對任意實數(shù)a,bc,給出下列命題:

①“”是“”的充要條件

②“是無理數(shù)”是“a是無理數(shù)”的充要條件;

③“”是“”的充分不必要條件

④“”是“”的必要不充分條件,

其中真命題的個數(shù)為(

A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】【題目】已知拋物線的焦點曲線的一個焦點, 為坐標原點,點為拋物線上任意一點,過點軸的平行線交拋物線的準線于,直線交拋物線于點.

(Ⅰ)求拋物線的方程;

(Ⅱ)求證:直線過定點,并求出此定點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】學習雷鋒精神前半年內某單位餐廳的固定餐椅經常有損壞,學習雷鋒精神時全修好;單位對學習雷鋒精神前后各半年內餐椅的損壞情況作了一個大致統(tǒng)計,具體數(shù)據如下:

損壞餐椅數(shù)

未損壞餐椅數(shù)

總 計

學習雷鋒精神前

50

150

200

學習雷鋒精神后

30

170

200

總 計

80

320

400

(1)求:學習雷鋒精神前后餐椅損壞的百分比分別是多少?并初步判斷損毀餐椅數(shù)量與學習雷鋒精神是否有關?

(2)請說明是否有97.5%以上的把握認為損毀餐椅數(shù)量與學習雷鋒精神有關?

參考公式: ,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(本題滿分14分)如圖,在四棱錐中, 平面,底面是菱形, , 的交點, 上任意一點.

1)證明:平面平面;

2)若平面,并且二面角的大小為,求的值.

查看答案和解析>>

同步練習冊答案