【題目】已知函數(shù).

(Ⅰ)過原點作函數(shù)的切線,求的方程;

(Ⅱ)若對于任意恒成立,試確定實數(shù)的取值范圍.

【答案】(Ⅰ);(Ⅱ) .

【解析】試題分析:(Ⅰ)設(shè)直線與函數(shù)相切于點,得切線方程,代入(0,0)即可得解;

(Ⅱ)“對于任意恒成立”,等價于“對于任意恒成立”,等價于“”, 設(shè),求導(dǎo)討論函數(shù)單調(diào)性求最值即可.

試題解析:

(Ⅰ)設(shè)直線與函數(shù)相切于點,

因為,則,

則切線的方程為,

因為過原點,代入上式可得

,即,

所以切線的方程為.

(Ⅱ)“對于任意恒成立”,等價于“對于任意恒成立”,等價于“”,

設(shè),

,

①當(dāng)時, 恒成立,滿足題意;

②當(dāng)時, , 單調(diào)遞增,

由于,不合題意;

③當(dāng)時,令,

,

所以單調(diào)遞減,在單調(diào)遞增,

,

,

,所以,

解得,

綜上所述, 的取值范圍為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某班50名學(xué)生在一次百米測試中,成績?nèi)拷橛?3秒到19秒之間,下圖是這次測試成績的頻率分布直方圖.設(shè)成績小于17秒的學(xué)生人數(shù)占全班總?cè)藬?shù)的百分比為x,成績大于等于15秒且小于17秒的學(xué)生人數(shù)為y,則x和y分別為(  )

A. 10%,45B. 90%,45C. 10%,35D. 90%,35

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】等邊的邊長為3,點分別為上的點,且滿足(如圖1),將沿折起到的位置,使二面角成直二面角,連接, (如圖2

1)求證: 平面

2)在線段上是否存在點,使直線與平面所成的角為?若存在,求出的長;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x2bxc(bcR),對任意的xR,恒有f′(x)≤f(x).

(1)證明:當(dāng)x≥0時,f(x)≤(xc)2;

(2)若對滿足題設(shè)條件的任意bc,不等式f(c)-f(b)≤M(c2b2)恒成立,求M的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】年東京夏季奧運(yùn)會將設(shè)置米男女混合泳接力這一新的比賽項目,比賽的規(guī)則是:每個參賽國家派出22女共計4名運(yùn)動員比賽,按照仰泳蛙泳蝶泳自由泳的接力順序,每種泳姿米且由一名運(yùn)動員完成, 每個運(yùn)動員都要出場. 現(xiàn)在中國隊確定了備戰(zhàn)該項目的4名運(yùn)動員名單,其中女運(yùn)動員甲只能承擔(dān)仰泳或者自由泳,男運(yùn)動員乙只能承擔(dān)蝶泳或自由泳,剩下的男女各一名運(yùn)動員則四種泳姿都可以上,那么中國隊共有( )種兵布陣的方式.

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,ADAB,∠CAB60°,∠BCD120°,AC2.

1)若∠ABC30°,求DC

2)記∠ABCθ,當(dāng)θ為何值時,△BCD的面積有最小值?求出最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】的內(nèi)角,的對邊分別為,,,已知 ,,.

(1)求角;

(2)若點滿足,求的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的圖象與軸的交點中,相鄰兩個交點之間的距離為,且圖象過點

1)求的解析式;

2)求函數(shù)的單調(diào)遞增區(qū)間;

3)將函數(shù)的圖象向右平移個單位,再將圖象上各點的橫坐標(biāo)伸長到原來的2倍(縱坐標(biāo)不變),得到函數(shù)的圖象,若關(guān)于的方程,在區(qū)間上有且只有一個實數(shù)解,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案