(1)f(x)=;
(2)f(x)=x3-2x;
(3)f(x)=a(x∈R);
(4)f(x)=
思路分析:
按奇函數(shù)或偶函數(shù)的定義或幾何特征進(jìn)行判斷即可.
解:(1)函數(shù)的定義域?yàn)閧x|x≠-1},不關(guān)于原點(diǎn)對(duì)稱,所以f(x)既不是奇函數(shù)也不是偶函數(shù).
(2)函數(shù)的定義域?yàn)镽,關(guān)于原點(diǎn)對(duì)稱,f(-x)=(-x)3-2(-x)=2x-x3=-f(x),所以f(x)是奇函數(shù).
(3)函數(shù)的定義域?yàn)镽,關(guān)于原點(diǎn)對(duì)稱,
當(dāng)a=0時(shí),f(x)既是奇函數(shù)又是偶函數(shù);
當(dāng)a≠0時(shí),f(-x)=a=f(x),即f(x)是偶函數(shù).
(4)函數(shù)的定義域?yàn)镽,關(guān)于原點(diǎn)對(duì)稱,
當(dāng)x≥0時(shí),-x<0,此時(shí)f(-x)=-x[1+(-x)]=-x(1-x)=-f(x);
當(dāng)x<0時(shí),-x≥0,此時(shí)f(-x)=-x[1+(-x)]=-x(1-x)= -f(x);
當(dāng)x=0時(shí),-x<0,此時(shí)f(-x)=0,f(x)=0,即f(-x)=-f(x);
綜上,f(-x)=-f(x),所以f(x)為奇函數(shù).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
|
1+x2 |
1+sinx-cosx |
1+sinx+cosx |
x |
ax-1 |
x |
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
tanx+1 |
tanx-1 |
1+sin2x |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
| ||
|x+3|-3 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com