19.從進(jìn)入決賽的6名選手中決出1名一等獎,2名二等獎,3名三等獎,則可能的決賽結(jié)果共有( 。┓N.
A.30B.48C.54D.60

分析 6名選手中決出1名一等獎有A61種方法,2名二等獎,C52種方法,利用分步計數(shù)原理即可得答案.

解答 解:依題意,可分三步,第一步從6名選手中決出1名一等獎有A61種方法,
第二步,再決出2名二等獎,有C52種方法,
第三步,剩余三人為三等獎,
根據(jù)分步乘法計數(shù)原理得:共有A61•C52=60種方法.
故選D.

點(diǎn)評 本題考查排列、組合及簡單計數(shù)問題,掌握分步計數(shù)原理是解決問題的關(guān)鍵,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.如果長方體三面的面積分別是$\sqrt{2},\sqrt{3},\sqrt{6}$,那么它的外接球的半徑是( 。
A.$\sqrt{6}$B.$\frac{{\sqrt{6}}}{2}$C.$\sqrt{3}$D.$\frac{{3\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2016-2017學(xué)年江西吉安一中高二上段考一數(shù)學(xué)(理)試卷(解析版) 題型:選擇題

下列四個命題中錯誤的個數(shù)是( )

①垂直于同一條直線的兩條直線相互平行;

②垂直于同一個平面的兩條直線相互平行;

③垂直于同一條直線的兩個平面相互平行;

④垂直于同一個平面的兩個平面相互平行.

A.1 B.2 C.3 D. 4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.設(shè)向量$\overrightarrow a$=(1,m),$\overrightarrow b$=(m,4),若$\overrightarrow a$∥$\overrightarrow b$,則實數(shù)m的值是( 。
A.2B.-2C.0D.-2或2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.設(shè)X~B(n,p),且E(X)=12,D(X)=4,則n與p的值分別為(  )
A.18,$\frac{1}{3}$B.12,$\frac{2}{3}$C.18,$\frac{2}{3}$D.12,$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.某中學(xué)在運(yùn)動會期間舉行定點(diǎn)投籃比賽,規(guī)定每人投籃4次,投中一球得2分,沒有投中得0分,假設(shè)每次投籃投中與否是相互獨(dú)立的.已知小明每次投籃投中的概率都是 $\frac{1}{3}$.
(1)求小明在4次投籃中有三次投中的概率;
(2)求小明在4次投籃后的總得分X的分布列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2016-2017學(xué)年江西吉安一中高二上段考一數(shù)學(xué)(理)試卷(解析版) 題型:選擇題

過點(diǎn)、點(diǎn)且圓心在直線上的圓的方程是( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知數(shù)列{an}的前n項和為Sn,且Sn=2an-1,n∈N+
(1)求數(shù)列{an}的通項公式;
(2)若bn=log2a2n,求數(shù)列{$\frac{1}{{{b_n}{b_{n+1}}}}$}的前n項和為Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖,在平面四邊形ABCD中,DA⊥AB,DE=2,EC=$\sqrt{7}$,EA=3,∠ADC=$\frac{2π}{3}$,∠BEC=$\frac{π}{2}$.
(1)求sin∠CED的值;
(2)求BE的長.

查看答案和解析>>

同步練習(xí)冊答案