20.為了摸清整個(gè)江門(mén)大道的交通狀況,工作人員隨機(jī)選取20處路段,在給定的測(cè)試時(shí)間內(nèi)記錄到機(jī)動(dòng)車的通行數(shù)量情況如下(單位:輛):
147  161  170  180  163  172  178  167  191  182
181  173  174  165  158  154  159  189  168  169
(Ⅰ)完成如下頻數(shù)分布表,并作頻率分布直方圖;
通行數(shù)量區(qū)間[145,155)[155,165)[165,175)[175,185)[185,195)
頻數(shù)
(Ⅱ)現(xiàn)用分層抽樣的方法從通行數(shù)量區(qū)間為[165,175)、[175,185)及[185,195)的路段中取出7處加以優(yōu)化,再?gòu)倪@7處中隨機(jī)選2處安裝智能交通信號(hào)燈,設(shè)所取出的7處中,通行數(shù)量區(qū)間為[165,175)路段安裝智能交通信號(hào)燈的數(shù)量為隨機(jī)變量X(單位:盞),試求隨機(jī)變量X的分布列與數(shù)學(xué)期望E(X).

分析 (I)利用已知數(shù)據(jù)即可得出;
(II)用分層抽樣的方法抽取7處,即可得出.利用P(X=k)=$\frac{{∁}_{4}^{k}{∁}_{3}^{2-k}}{{∁}_{7}^{2}}$,即可得出.

解答 解:(Ⅰ)

 通行數(shù)量區(qū)間[145,155)[155,165)[165,175)[175,185)[185,195)
 頻數(shù) 2 4 8 4 2
…(5分)

(Ⅱ)用分層抽樣的方法抽取7處,則通行數(shù)量區(qū)間為[165,175],
[175,185],及[185,195)的路段應(yīng)分別取4處、2處、1處…(6分)
依題意,X的可能取值為0,1,2  …(7分)
利用P(X=k)=$\frac{{∁}_{4}^{k}{∁}_{3}^{2-k}}{{∁}_{7}^{2}}$,可得P(X=0)=$\frac{1}{7}$,P(X=1)=$\frac{4}{7}$,P(X=2)=$\frac{2}{7}$. …(10分)
∴隨機(jī)變量X的分布列為:
X012
P$\frac{1}{7}$$\frac{4}{7}$$\frac{2}{7}$
EX=0+1×$\frac{4}{7}$+2×$\frac{2}{7}$=$\frac{8}{7}$.…(12分)

點(diǎn)評(píng) 本題考查了頻率分布直方圖的性質(zhì)、分層抽樣方法、超幾何分布列與數(shù)學(xué)期望計(jì)算公式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知f(x)為奇函數(shù),當(dāng)x<0時(shí),f(x)=a+x+log2(-x),其中a∈(-4,5),則f(4)>0的概率為( 。
A.$\frac{1}{3}$B.$\frac{4}{9}$C.$\frac{5}{9}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.設(shè)點(diǎn)P為橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{4}=1({a>2})$上一點(diǎn),F(xiàn)1,F(xiàn)2分別為C的左、右焦點(diǎn),且∠F1PF2=60°,則△PF1F2的面積為( 。
A.$4\sqrt{3}$B.$2\sqrt{3}$C.$\frac{{4\sqrt{3}}}{3}$D.$\frac{{2\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.某公司為感謝全體員工的辛勤勞動(dòng),決定在年終答謝會(huì)上,通過(guò)摸球方式對(duì)全公司1000位員工進(jìn)行現(xiàn)金抽獎(jiǎng).規(guī)定:每位員工從裝有4個(gè)相同質(zhì)地球的袋子中一次性隨機(jī)摸出2個(gè)球,這4個(gè)球上分別標(biāo)有數(shù)字a、b、c、d,摸出來(lái)的兩個(gè)球上的數(shù)字之和為該員工所獲的獎(jiǎng)勵(lì)額X(單位:元).公司擬定了以下三個(gè)數(shù)字方案:
方案abcd
100100100500
100100500500
200200400400
(Ⅰ)如果采取方案一,求X=200的概率;
(Ⅱ)分別計(jì)算方案二、方案三的平均數(shù)$\overline{X}$和方差s2,如果要求員工所獲的獎(jiǎng)勵(lì)額相對(duì)均衡,方案二和方案三選擇哪個(gè)更好?
(Ⅲ)在投票選擇方案二還是方案三時(shí),公司按性別分層抽取100名員工進(jìn)行統(tǒng)計(jì),得到如下不完整的2×2列聯(lián)表.請(qǐng)將該表補(bǔ)充完整,并判斷能否有90%的把握認(rèn)為“選擇方案二或方案三與性別有關(guān)”?
方案二方案三合計(jì)
男性1248                   60           
女性6        3440
合計(jì)1882100
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
P(K2≥k00.150.100.05
k02.0722.7063.841

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.《九章算術(shù)》中,將底面是直角三角形的直三棱柱稱為“塹堵”.某“塹堵”的三視圖如圖,則它的表面積為( 。
A.2B.4+2$\sqrt{2}$C.4+4$\sqrt{2}$D.6+4$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.若集合A={y|y=lgx},B={x|y=$\sqrt{x}$},則集合A∩B=(  )
A.(0,+∞)B.[0,+∞)C.(1,+∞)D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.運(yùn)行如圖所示的程序框圖,則輸出的結(jié)果是( 。
A.$\frac{49}{99}$B.$\frac{50}{101}$C.$\frac{51}{103}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.長(zhǎng)方體長(zhǎng),寬,高分別為3,2,$\sqrt{3}$,則長(zhǎng)方體的外接球體積為( 。
A.12πB.$\frac{32}{3}$πC.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.如圖,在正方形ABCD中,E為BC邊中點(diǎn),若$\overrightarrow{AE}$=λ$\overrightarrow{AB}$+μ$\overrightarrow{AD}$,則λ+μ=$\frac{3}{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案