【題目】已知函數f(x)=x2+ .
(1)判斷f(x)的奇偶性并說明理由;
(2)當a=16時,判斷f(x)在x∈(0,2]上的單調性并用定義證明;
(3)試判斷方程x3﹣2016x+16=0在區(qū)間(0,+∞)上解的個數并證明你的結論.
【答案】
(1)解:f(x)的定義域為{x|x≠0},關于原點對稱.
①a=0時,f(﹣x)=x2=f(x),∴f(x)是偶函數.
②a≠0時,f(﹣x)≠±f(x),∴f(x)是非奇非偶函數
(2)解:當a=16時,f(x)=x2+ ,任取0<x1<x2≤2,
則f(x1)﹣f(x2)= ﹣ =(x1﹣x2) ,
∵0<x1<x2≤2,∴x1﹣x2<0,0<x1x2<4,0<x1+x2<4.
∴(x1﹣x2) >0,即f(x1)﹣f(x2)>0,∴f(x1)>f(x2).
∴f(x)在x∈(0,2]上是單調遞減函數
(3)解:結論:方程在(0,+∞)上共有兩個解.
證明:當a=16時,任取2≤x1<x2,則同理可證f(x1)<f(x2).
∴f(x)在[2,+∞)上是單調遞增函數.
∴x3﹣2016x+16=0在的解即為方程x2+ ﹣2016=0,x∈(0,+∞)的解.
令g(x)=f(x)﹣2016,
∴當x∈(0,2)時,由 =16000+ >2016得 >0.
且f(2)=12<2016得g(2)<0,
又g(x)的圖象在x∈(0,2]的解上是不間斷的曲線,由零點存在定理知函數在x∈[0,2]上有一個零點,又由g(x)在x∈(0,2]上是單調遞減函數,所以函數在[0,2]上只有一個零點.
當x∈(2,+∞)時,由f(2)=12<2016,且f(1000)>0且f(x)在x∈[2,+∞)上是單調遞增函數得g(2)<0,
g(1000)>0,g(x)的圖象在(2,+∞)上是不間斷的曲線,
由零點存在定理知函數在x∈[2,+∞)有一個零點,又由g(x)在x∈(2,+∞)調遞增知函數在x∈(2,+∞)只有一個零點
【解析】(1)對a分類討論,計算f(﹣x)與±f(x)的關系即可判斷出奇偶性.(2)當a=16時,f(x)=x2+ ,任取0<x1<x2≤2,作差f(x1)﹣f(x2)=(x1﹣x2) ,判斷符號即可證明.(3)利用函數的單調性、函數零點判定定理即可得出.
【考點精析】本題主要考查了函數單調性的判斷方法和函數的奇偶性的相關知識點,需要掌握單調性的判定法:①設x1,x2是所研究區(qū)間內任兩個自變量,且x1<x2;②判定f(x1)與f(x2)的大小;③作差比較或作商比較;偶函數的圖象關于y軸對稱;奇函數的圖象關于原點對稱才能正確解答此題.
科目:高中數學 來源: 題型:
【題目】孝感市及周邊地區(qū)的市民游玩又添新去處啦!孝感熙鳳水鄉(xiāng)旅游度假區(qū)于2017年10月1日正式對外開放.據統計,從2017年10月1日到10月7日參觀孝感市熙鳳水鄉(xiāng)旅游度假區(qū)的人數如表所示:
日期 | 1日 | 2日 | 3日 | 4日 | 5日 | 6日 | 7日 |
人數(萬) | 11 | 13 | 8 | 9 | 7 | 8 | 10 |
(1)把這7天的參觀人數看成一個總體,求該總體的眾數和平均數(精確到0.1);
(2)用簡單隨機抽樣方法從10月1日到10月4日中抽取2天,它們的參觀人數組成一個樣本,求該樣本平均數與總體平均數之差的絕對值不超過1萬的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的離心率是,且過點.直線與橢圓相交于兩點.
(Ⅰ)求橢圓的方程;
(Ⅱ)求的面積的最大值;
(Ⅲ)設直線, 分別與軸交于點, .判斷, 大小關系,并加以證明.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的右焦點,橢圓的左,右頂點分別為.過點的直線與橢圓交于兩點,且的面積是的面積的3倍.
(Ⅰ)求橢圓的方程;
(Ⅱ)若與軸垂直,是橢圓上位于直線兩側的動點,且滿足,試問直線的斜率是否為定值,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=Asin(ωx+φ)(其中A>0,ω>0,丨φ丨< )的部分圖象如圖所示,則f(x)的解析式為( )
A.f(x)=2sin(x+ )
B.f(x)=2sin(2x+ )
C.f(x)=2sin(2x﹣ )
D.f(x)=2sin(4x﹣ )
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】解答題
(1)在等比數列{an}中,a5=162,公比q=3,前n項和Sn=242,求首項a1和項數n.
(2)有四個數,其中前三個數成等比數列,其積為216,后三個數成等差數列,其和為36,求這四個數.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com