【題目】如圖, 直線與拋物線交于兩點, 線段的垂直平分線與直線交于點.
(1)求點的坐標;
(2)當P為拋物線上位于線段下方(含)的動點時, 求ΔOPQ面積的最大值.
【答案】(1) ;(2) 最大值30
【解析】
(1)把直線方程拋物線方程聯(lián)立求得交點A,B的坐標,則AB中點M的坐標可得,利用AB的斜率推斷出AB垂直平分線的斜率,進而求得AB垂直平分線的方程,把y=-5代入求得Q的坐標.
(2)設(shè)出P的坐標,利用P到直線OQ的距離求得三角形的高,利用兩點間的距離公式求得OQ的長,最后利用三角形面積公式表示出三角形OPQ,利用x的范圍和二次函數(shù)的單調(diào)性求得三角形面積的最大值.
解:(1) 解方程組得或
即A(-4,-2),B(8,4), 從而AB的中點為M(2,1).
由,
直線的垂直平分線方程
令, 得, ∴
(2)直線OQ的方程為x+y=0, 設(shè)
∵點P到直線OQ的距離d==,,
∴=.
∵P為拋物線上位于線段AB下方的點, 且P不在直線OQ上,
∴-4≤x<4-4或4-4< x≤8.
∵函數(shù)在區(qū)間上單調(diào)遞增,
∴當x=8時, ΔOPQ的面積取到最大值30
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,,.
(Ⅰ)若,求的極值;
(Ⅱ)若函數(shù)的兩個零點為,記,證明:.
【答案】(Ⅰ)極大值為,無極小值;(Ⅱ)證明見解析.
【解析】分析:(Ⅰ)先判斷函數(shù)在上的單調(diào)性,然后可得當時,有極大值,無極小值.(Ⅱ)不妨設(shè),由題意可得,即,又由條件得,構(gòu)造,令,則,利用導(dǎo)數(shù)可得,故得,又,所以.
詳解:(Ⅰ),
,
由得,
且當時,,即在上單調(diào)遞增,
當時,,即在上單調(diào)遞減,
∴當時,有極大值,且,無極小值.
(Ⅱ)函數(shù)的兩個零點為,不妨設(shè),
,.
,
即,
又,,
,
.
令,則
,
在上單調(diào)遞減,
故,
,
即,
又,
.
點睛:(1)研究方程根的情況,可以通過導(dǎo)數(shù)研究函數(shù)的單調(diào)性、最大(。┲、函數(shù)的變化趨勢等,根據(jù)題目要求,畫出函數(shù)圖象的大體圖象,然后通過數(shù)形結(jié)合的思想去分析問題,可以使得問題的求解有一個清晰、直觀的整體展現(xiàn).
(2)證明不等式時常采取構(gòu)造函數(shù)的方法,然后通過判斷函數(shù)的單調(diào)性,借助函數(shù)的最值進行證明.
【題型】解答題
【結(jié)束】
22
【題目】在平面直角坐標系中,直線的參數(shù)方程為(為參數(shù),).以坐標原點為極點,以軸正半軸為極軸,建立極坐標系,已知曲線的極坐標方程為:.
(Ⅰ)求直線的普通方程與曲線的直角坐標方程;
(Ⅱ)設(shè)直線與曲線交于不同的兩點,若,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校在學(xué)年期末舉行“我最喜歡的文化課”評選活動,投票規(guī)則是一人一票,高一(1)班44名學(xué)生和高一(7)班45名學(xué)生的投票結(jié)果如下表(無廢票):
語文 | 數(shù)學(xué) | 外語 | 物理 | 化學(xué) | 生物 | 政治 | 歷史 | 地理 | |
高一(1)班 | 6 | 9 | 7 | 5 | 4 | 5 | 3 | 3 | 2 |
高一(7)班 | 6 | 4 | 5 | 6 | 5 | 2 | 3 |
該校把上表的數(shù)據(jù)作為樣本,把兩個班同一學(xué)科的得票之和定義為該年級該學(xué)科的“好感指數(shù)”.
(Ⅰ)如果數(shù)學(xué)學(xué)科的“好感指數(shù)”比高一年級其他文化課都高,求的所有取值;
(Ⅱ)從高一(1)班投票給政治、歷史、地理的學(xué)生中任意選取位同學(xué),設(shè)隨機變量為投票給地理學(xué)科的人數(shù),求的分布列和期望;
(Ⅲ)當為何值時,高一年級的語文、數(shù)學(xué)、外語三科的“好感指數(shù)”的方差最小?(結(jié)論不要求證明)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】新高考最大的特點就是取消文理分科,除語文、數(shù)學(xué)、外語之外,從物理、化學(xué)、生物、政治、歷史、地理這科中自由選擇三門科目作為選考科目.某研究機構(gòu)為了了解學(xué)生對全文(選擇政治、歷史、地理)的選擇是否與性別有關(guān),從某學(xué)校高一年級的1000名學(xué)生中隨機抽取男生,女生各人進行模擬選科.經(jīng)統(tǒng)計,選擇全文的人數(shù)比不選全文的人數(shù)少人.
(1)估計在男生中,選擇全文的概率.
(2)請完成下面的列聯(lián)表;并估計有多大把握認為選擇全文與性別有關(guān),并說明理由;
附:,其中.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下列結(jié)論:
①“且為真”是“或為真”的充分不必要條件:②“且為假”是“或為真”的充分不必要條件;③“或為真”是“非為假”的必要不充分條件;④“非為真”是“且為假”的必要不充分條件.
其中,正確的結(jié)論是__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知10件不同產(chǎn)品中有3件是次品,現(xiàn)對它們一一取出(不放回)進行檢測,直至取出所有次品為止.
(1)若恰在第5次取到第一件次品,第10次才取到最后一件次品,則這樣的不同測試方法數(shù)有多少?
(2)若恰在第6次取到最后一件次品,則這樣的不同測試方法數(shù)是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】[選修4―4:坐標系與參數(shù)方程]
在直角坐標系xOy中,直線l1的參數(shù)方程為(t為參數(shù)),直線l2的參數(shù)方程為.設(shè)l1與l2的交點為P,當k變化時,P的軌跡為曲線C.
(1)寫出C的普通方程;
(2)以坐標原點為極點,x軸正半軸為極軸建立極坐標系,設(shè)l3:ρ(cosθ+sinθ) =0,M為l3與C的交點,求M的極徑.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系中,已知點,的坐標分別為,.直線,相交于點,且它們的斜率之積是.記點的軌跡為.
(Ⅰ)求的方程.
(Ⅱ)已知直線,分別交直線于點,,軌跡在點處的切線與線段交于點,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com