若拋物線
的焦點(diǎn)與橢圓
的右焦點(diǎn)重合,則
的值為( )
試題分析:易知:
,所以橢圓的右焦點(diǎn)坐標(biāo)為(2,0),所以
。
點(diǎn)評:注意橢圓中
的關(guān)系式與雙曲線中
的關(guān)系式的區(qū)別。
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知曲線
所圍成的封閉圖形的面積為
,曲線
的內(nèi)切圓半徑為
.記
為以曲線
與坐標(biāo)軸的交點(diǎn)為頂點(diǎn)的橢圓.
(1)求橢圓
的標(biāo)準(zhǔn)方程;
(2)設(shè)
是過橢圓
中心的任意弦,
是線段
的垂直平分線.
是
上異于橢圓中心的點(diǎn).
(i)若
(
為坐標(biāo)原點(diǎn)),當(dāng)點(diǎn)
在橢圓
上運(yùn)動時(shí),求點(diǎn)
的軌跡方程;
(ii)若
是
與橢圓
的交點(diǎn),求
的面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本題滿分16分) 本題共有3個(gè)小題,第1小題滿分4分,第2小題滿分6分. 第3小題滿分6分.
(文)已知橢圓
的一個(gè)焦點(diǎn)為
,點(diǎn)
在橢圓
上,點(diǎn)
滿足
(其中
為坐標(biāo)原點(diǎn)), 過點(diǎn)
作一斜率為
的直線交橢圓于
、
兩點(diǎn)(其中
點(diǎn)在
軸上方,
點(diǎn)在
軸下方) .
(1)求橢圓
的方程;
(2)若
,求
的面積;
(3)設(shè)點(diǎn)
為點(diǎn)
關(guān)于
軸的對稱點(diǎn),判斷
與
的位置關(guān)系,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
在平面直角坐標(biāo)系xOy中,已知點(diǎn)A(0,2),直線l:x+y-4=0,點(diǎn)B(x,y)是圓C:x2+y2-2x-1=0上的動點(diǎn),AD⊥l,BE⊥l,垂足分別為D、E,則線段DE的最大值是________.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
如圖,橢圓的中心在坐標(biāo)原點(diǎn),
為左焦點(diǎn),當(dāng)
時(shí),其離心率為
,此類橢圓稱為“黃金橢圓”,類比“黃金橢圓”,可推出“黃金雙曲線”的離心率為
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分13分)已知點(diǎn)
分別為橢圓
的左、右焦點(diǎn),點(diǎn)
為橢圓上任意一點(diǎn),
到焦點(diǎn)
的距離的最大值為
.
(1)求橢圓
的方程。
(2)點(diǎn)
的坐標(biāo)為
,過點(diǎn)
且斜率為
的直線
與橢圓
相交于
兩點(diǎn)。對于任意的
是否為定值?若是求出這個(gè)定值;若不是說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
下列方程的曲線關(guān)于y軸對稱的是( )
A.x2-x+y2=1 | B.x2y+xy2=1 |
C.x2-y2=1 | D.x-y="1" |
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
已知點(diǎn)
和
,曲線上的動點(diǎn)P到
、
的距離之差為6,則曲線方程為()
查看答案和解析>>