【題目】已知中心在原點(diǎn)的雙曲線C的右焦點(diǎn)為(2,0),實(shí)軸長為.

(1)求雙曲線C的方程;

(2)若直線l:y=kx+與雙曲線C左支交于A、B兩點(diǎn),求k的取值范圍;

【答案】(1);(2)

【解析】

(1)根據(jù)焦點(diǎn)坐標(biāo)求得,根據(jù)實(shí)軸長求得,結(jié)合求得,由此求得雙曲線方程.(2)將直線的方程代入雙曲線方程,根據(jù)判別式以及兩根和與兩根的積的情況列出不等式組,解不等式組求得的區(qū)范圍.

(1)設(shè)雙曲線C的方程為=1(a>0,b>0).

由已知得:a=,c=2,再由a2+b2=c2,∴b2=1,

∴雙曲線C的方程為-y2=1.

(2)設(shè)A(xA,yA)、B(xB,yB),將y=kx+代入-y2=1,

得:(1-3k2)x2-6kx-9=0.

由題意知解得<k<1.

當(dāng)<k<1時(shí),l與雙曲線左支有兩個(gè)交點(diǎn).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知梯形與梯形全等, , , , , 中點(diǎn).

(Ⅰ)證明: 平面

(Ⅱ)點(diǎn)在線段上(端點(diǎn)除外),且與平面所成角的正弦值為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】數(shù)列
(1)在等差數(shù)列{an}中,a6=10,S5=5,求該數(shù)列的第8項(xiàng)a8;
(2)在等比數(shù)列{bn}中,b1+b3=10,b4+b6= ,求該數(shù)列的前5項(xiàng)和S5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若定義在R上的函數(shù) 滿足 ,其導(dǎo)函數(shù) 滿足 ,則下列結(jié)論中一定錯(cuò)誤的是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=(x﹣2)ex+a(x﹣1)2
(1)討論f(x)的單調(diào)性;
(2)若f(x)有兩個(gè)零點(diǎn),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線l過直線x﹣y﹣1=0與直線2x+y﹣5=0的交點(diǎn)P.

(1)若l與直線x+3y﹣1=0垂直,求l的方程;

(2)點(diǎn)A(﹣1,3)和點(diǎn)B(3,1)到直線l的距離相等,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在同一個(gè)坐標(biāo)系中畫出函數(shù)y=ax , y=sinax的部分圖象,其中a>0且a≠1,則下列所給圖象中可能正確的是(  )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點(diǎn)P是平行四邊形ABCD所在平面外一點(diǎn),M、N分別是AB、PC的中點(diǎn).

(1)求證:MN∥平面PAD;

(2)在PB上確定一個(gè)點(diǎn)Q,使平面MNQ∥平面PAD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下面四個(gè)結(jié)論: ①數(shù)列可以看作是一個(gè)定義在正整數(shù)集(或它的有限子集{1,2,3……,n})上的函數(shù);
②數(shù)列若用圖象表示,從圖象上看都是一群孤立的點(diǎn);
③數(shù)列的項(xiàng)數(shù)是無限的;
④數(shù)列通項(xiàng)的表示式是唯一的.
其中正確的是( )
A.①②
B.①②③
C.②③
D.①②③④

查看答案和解析>>

同步練習(xí)冊答案