【題目】如圖,已知梯形與梯形全等, , , , , 中點.

(Ⅰ)證明: 平面

(Ⅱ)點在線段上(端點除外),且與平面所成角的正弦值為,求的值.

【答案】(Ⅰ)見解析;(Ⅱ) .

【解析】試題分析:(Ⅰ):設(shè)中點,連結(jié),易得四邊形是平行四邊形,有,進而可證線面平行;

(Ⅱ)由 平面,以為坐標原點, , 的方向分別為軸、軸、軸正方向,建立空間直角坐標系.設(shè)點上,且,求得平面的個法向量,設(shè)與平面所成角為,則,從而得解.

試題解析:

(Ⅰ)證明:方法一:設(shè)中點,連結(jié),因為中點,

所以的中位線, .

由已知,所以,因此四邊形是平行四邊形,

所以.

平面, 平面,所以平面.

方法二:延長線段, ,交于點,連結(jié),由,則的中點,又的中點,所以的中位線,所以.

平由, 平面,所以平面.

(Ⅱ)由梯形與梯形全等,

因為, ,

所以 .

中,

所以.因為,

故有,從而,

又因為, ,所以平面.

為坐標原點, , 的方向分別為軸、軸、軸正方向,建立空間直角坐標系.設(shè)點上,且, ,

, ,所以

設(shè)是平面的個法向量,則

,

.

設(shè)與平面所成角為,

,即.

解得, (舍去),故.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)函數(shù), ,其中是實數(shù).

1解關(guān)于的不等式

2)若求關(guān)于的方程實根的個數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率為,橢圓短軸的一個端點與兩個焦點構(gòu)成的三角形的面積為.

(1)求橢圓的方程式;

(2)已知動直線與橢圓相交于兩點.

①若線段中點的橫坐標為,求斜率的值;

②已知點,求證: 為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知曲線

(1)求曲線在點處的切線方程;

(2)求過點的曲線的切線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖在多面體中,四邊形是邊長為的正方形, 為等腰梯形,且, , , .

(1)證明:平面平面;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐中,底面為平行四邊形, 是棱PD的中點,且,

I)求證: ; Ⅱ)求二面角的大小;

Ⅲ)若上一點,且直線與平面成角的正弦值為,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】4月23日是“世界讀書日”,某中學在此期間開展了一系列的讀書教育活動,為了解本校學生課外閱讀情況,學校隨機抽取了100名學生對其課外閱讀時間進行調(diào)查,下面是根據(jù)調(diào)查結(jié)果繪制的學生日均課外閱讀時間(單位:min)的頻率分布直方圖,若將日均課外閱讀時間不低于60 min的學生稱為“書蟲”,低于60 min的學生稱為“懶蟲”,

(1)求x的值并估計全校3 000名學生中“書蟲”大概有多少名學生?(將頻率視為概率)

(2)根據(jù)已知條件完成下面2×2的列聯(lián)表,并判斷能否在犯錯誤的概率不超過0.01的前提下認為“書蟲”與性別有關(guān):

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓 ,直線過定點.

(Ⅰ)若與圓相切,求的方程;

(Ⅱ)若與圓相交于、兩點,求的面積的最大值,并求此時直線的方程.(其中點是圓的圓心)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某市電力公司為了制定節(jié)電方案,需要了解居民用電情況,通過隨機抽樣,電力公司獲得了戶居民的月平均用電量,分為六組制出頻率分布表和頻率分布直方圖(如圖所示).

組號

分組

頻數(shù)

頻率

(1)求 的值;

(2)為了解用電量較大的用戶用電情況,在第兩組用分層抽樣的方法選取戶.

①求第、兩組各取多少戶?

②若再從這戶中隨機選出戶進行入戶了解用電情況,求這戶中至少有一戶月平均用電量在范圍內(nèi)的概率.

查看答案和解析>>

同步練習冊答案