【題目】設(shè)函數(shù)
,曲線
過點(diǎn)
,且在點(diǎn)
處的切線方程為
.
(1)求
的值;
(2)證明:當(dāng)
時(shí),
;
(3)若當(dāng)
時(shí),
恒成立,求實(shí)數(shù)
的取值范圍.
【答案】(1)
;(2)詳見解析;(3)
.
【解析】試題分析:(1)根據(jù)導(dǎo)數(shù)幾何意義得
,再結(jié)合
聯(lián)立方程組,解得
的值;(2)即證明差函數(shù)
的最小值非負(fù),先求差函數(shù)的導(dǎo)數(shù),為研究導(dǎo)函數(shù)符號(hào),需對(duì)導(dǎo)函數(shù)再次求導(dǎo),得導(dǎo)函數(shù)最小值為零,因此差函數(shù)單調(diào)遞增,也即差函數(shù)最小值為
,(3)不等式恒成立問題,一般轉(zhuǎn)化為對(duì)應(yīng)函數(shù)最值問題,本題仍研究差函數(shù)
,因?yàn)?/span>
,所以
.先求差函數(shù)導(dǎo)數(shù),再求導(dǎo)函數(shù)的導(dǎo)數(shù)得
,所以分
進(jìn)行討論:當(dāng)
時(shí),
滿足題意;當(dāng)
時(shí),能找到一個(gè)減區(qū)間,使得
不滿足題意.
試題解析:(1)由題意可知,
定義域?yàn)?/span>
,
,
.
(2)
,
設(shè)
,
,
由
,
在
上單調(diào)遞增,
∴
,
在
上單調(diào)遞增,
.
∴
.
(3)設(shè)
,
,
,
由(2)中知
,
,
∴
,
當(dāng)
即
時(shí),
,
所以
在
單調(diào)遞增,
,成立.
②當(dāng)
即
時(shí),
,令
,得
,
當(dāng)
時(shí),
單調(diào)遞減,則
,
所以
在
上單調(diào)遞減,所以
,不成立.
綜上,
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分14分)
設(shè)橢圓的離心率為,其左焦點(diǎn)與拋物線的焦點(diǎn)相同.
(1)求此橢圓的方程;
(2)若過此橢圓的右焦點(diǎn)的直線與曲線只有一個(gè)交點(diǎn),則
①求直線的方程;
②橢圓上是否存在點(diǎn),使得,若存在,請說明一共有幾個(gè)點(diǎn);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知向量,,設(shè)函數(shù).
(1)若函數(shù)的圖象關(guān)于直線對(duì)稱,且時(shí),求函數(shù)的單調(diào)增區(qū)間;
(2)在(1)的條件下,當(dāng)時(shí),函數(shù)有且只有一個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2017年1月1日,作為貴陽市打造“千園之城”27個(gè)示范性公園之一的泉湖公園正式開園.元旦期間,為了活躍氣氛,主辦方設(shè)置了水上挑戰(zhàn)項(xiàng)目向全體市民開放.現(xiàn)從到公園游覽的市民中隨機(jī)抽取了60名男生和40名女生共100人進(jìn)行調(diào)查,統(tǒng)計(jì)出100名市民中愿意接受挑戰(zhàn)和不愿意接受挑戰(zhàn)的男女生比例情況,具體數(shù)據(jù)如圖表:
(1)根據(jù)條件完成下列
列聯(lián)表,并判斷是否在犯錯(cuò)誤的概率不超過1%的情況下愿意接受挑戰(zhàn)與性別有關(guān)?
愿意 | 不愿意 | 總計(jì) | |
男生 | |||
女生 | |||
總計(jì) |
(2)水上挑戰(zhàn)項(xiàng)目共有兩關(guān),主辦方規(guī)定:挑戰(zhàn)過程依次進(jìn)行,每一關(guān)都有兩次機(jī)會(huì)挑戰(zhàn),通過第一關(guān)后才有資格參與第二關(guān)的挑戰(zhàn),若甲參加每一關(guān)的每一次挑戰(zhàn)通過的概率均為
,記甲通過的關(guān)數(shù)為
,求
的分布列和數(shù)學(xué)期望.
參考公式與數(shù)據(jù):
0.1 | 0.05 | 0.025 | 0.01 | |
2.706 | 3.841 | 5.024 | 6.635 |
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某高校數(shù)學(xué)系2016年高等代數(shù)試題有6個(gè)題庫,其中3個(gè)是新題庫(即沒有用過的題庫),3個(gè)是舊題庫(即至少用過一次的題庫),每次期末考試任意選擇2個(gè)題庫里的試題考試.
(1)設(shè)2016年期末考試時(shí)選到的新題庫個(gè)數(shù)為,求的分布列和數(shù)學(xué)期望;
(2)已知2016年時(shí)用過的題庫都當(dāng)作舊題庫,求2017年期末考試時(shí)恰好到1個(gè)新題庫的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一醫(yī)用放射性物質(zhì)原來質(zhì)量為a,每年衰減的百分比相同,當(dāng)衰減一半時(shí),所用時(shí)間是10年,根據(jù)需要,放射性物質(zhì)至少要保留原來的,否則需要更換.已知到今年為止,剩余的為原來的,
(1)求每年衰減的百分比;
(2)到今年為止,該放射性物質(zhì)已衰減了多少年?
(3)今后至多還能用多少年?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若一數(shù)集的任一元素的倒數(shù)仍在該集合中,則稱該數(shù)集為“可倒數(shù)集”.
(1)判斷集合A={-1,1,2}是否為可倒數(shù)集;
(2)試寫出一個(gè)含3個(gè)元素的可倒數(shù)集.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:極坐標(biāo)與參數(shù)方程
在平面直角坐標(biāo)系中,直線的參數(shù)方程為: (t為參數(shù)),它與曲線C: 相交于A,B兩點(diǎn).
(1)求|AB|的長;
(2)在以O(shè)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,設(shè)點(diǎn)P的極坐標(biāo)為,求點(diǎn)P到線段AB中點(diǎn)M的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知y=f(x)是定義在R上的奇函數(shù),且x<0時(shí),f(x)=1+2x.
(1)求函數(shù)f(x)的解析式;
(2)畫出函數(shù)f(x)的圖像;
(3)寫出函數(shù)f(x)的單調(diào)區(qū)間及值域.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com