【題目】2017年1月1日,作為貴陽市打造“千園之城”27個示范性公園之一的泉湖公園正式開園.元旦期間,為了活躍氣氛,主辦方設置了水上挑戰(zhàn)項目向全體市民開放.現從到公園游覽的市民中隨機抽取了60名男生和40名女生共100人進行調查,統(tǒng)計出100名市民中愿意接受挑戰(zhàn)和不愿意接受挑戰(zhàn)的男女生比例情況,具體數據如圖表:
(1)根據條件完成下列
列聯表,并判斷是否在犯錯誤的概率不超過1%的情況下愿意接受挑戰(zhàn)與性別有關?
愿意 | 不愿意 | 總計 | |
男生 | |||
女生 | |||
總計 |
(2)水上挑戰(zhàn)項目共有兩關,主辦方規(guī)定:挑戰(zhàn)過程依次進行,每一關都有兩次機會挑戰(zhàn),通過第一關后才有資格參與第二關的挑戰(zhàn),若甲參加每一關的每一次挑戰(zhàn)通過的概率均為
,記甲通過的關數為
,求
的分布列和數學期望.
參考公式與數據:
0.1 | 0.05 | 0.025 | 0.01 | |
2.706 | 3.841 | 5.024 | 6.635 |
.
科目:高中數學 來源: 題型:
【題目】【2014福建,文22】已知函數(為常數)的圖像與軸交于點,曲線在點處的切線斜率為.
(1)求的值及函數的極值;
(2)證明:當時,
(3)證明:對任意給定的正數,總存在,使得當時,恒有
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓經過點,且離心率為.
(Ⅰ)求橢圓的方程;
(Ⅱ)設是橢圓上的點,直線與(為坐標原點)的斜率之積為.若動點滿足,試探究是否存在兩個定點,使得為定值?若存在,求的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(本題滿分12分)甲、乙兩位學生參加數學競賽培訓,現分別從他們在培訓期間參加的若干次預賽成績中隨機抽取8次,記錄如下:
甲 82 81 79 78 95 88 93 84
乙 92 95 80 75 83 80 90 85
(1)用莖葉圖表示這兩組數據;
(2)現要從中選派一人參加數學競賽,從統(tǒng)計學的角度(在平均數、方差或標準差中選兩個)分析,你認為選派哪位學生參加合適?請說明理由
參考公式:
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】橢圓的中心在坐標原點,焦點在軸上,焦點到短軸端點的距離為2,離心率為.
(Ⅰ)求該橢圓的方程;
(Ⅱ)若直線與橢圓交于, 兩點且,是否存在以原點為圓心的定圓與直線相切?若存在求出定圓的方程;若不存在,請說明理由
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com