某公司生產(chǎn)某種產(chǎn)品,固定成本為20 000元,每生產(chǎn)一單位產(chǎn)品,成本增加100元,已知總營業(yè)收入R與年產(chǎn)量x的關(guān)系是R=R(x)=
400x-
1
2
x2(0≤x≤400)
60000-100x(x>400)
,則總利潤最大時,每年生產(chǎn)的產(chǎn)品是( 。
A、100B、150
C、200D、300
分析:先根據(jù)題意得出總成本函數(shù),從而寫出總利潤函數(shù),它是一個分段函數(shù),下面求其導(dǎo)數(shù)P′(x),令P′(x)=0,從而得出P的最大值即可.
解答:解:由題意得,總成本函數(shù)為C=C(x)=20000+100x,
所以總利潤函數(shù)為
P=P(x)=R(x)-C(x)=
300x-
1
2
x2-20000(0≤x≤400)
60000-100x(x>400)

而P′(x)=
300-x(0≤x≤400)
-100(x>400)

令P′(x)=0,得x=300,易知x=300時,P最大.
故選D
點評:本小題主要考查根據(jù)實際問題建立數(shù)學(xué)模型,以及運用函數(shù)、導(dǎo)數(shù)的知識解決實際問題的能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某公司生產(chǎn)某種產(chǎn)品的固定成本為2萬元,每生產(chǎn)一件產(chǎn)品增加投入150元,已知收益T(單位:元)滿足T(x)=
450x-
1
2
x2(0≤x≤400)
100000(x>400))
,其中x是產(chǎn)品的月產(chǎn)量.
(Ⅰ)將利潤W表示成月產(chǎn)量x的函數(shù);
(Ⅱ)當(dāng)月產(chǎn)量為多大時,公司的月利潤最大?(收益=成本+利潤)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某公司生產(chǎn)某種產(chǎn)品的成本為 1000元,并以1100元的價格批發(fā)出去,公司收入隨生產(chǎn)產(chǎn)品數(shù)量的增加而
增加
增加
(填“增加”或“減少”),它們之間
(填“是”或“不是”)函數(shù)關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某公司生產(chǎn)某種產(chǎn)品,固定成本為20000元,每生產(chǎn)一單位產(chǎn)品,成本增加100元,已知總收益R與年產(chǎn)量x的關(guān)系為R=R(x)=
400x-
1
2
x2,(0≤x≤400)
80000,(x>400)
,則總利潤最大時,每年生產(chǎn)的產(chǎn)品數(shù)量是
300
300

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年陜西省漢中市勉縣一中高一(上)期中數(shù)學(xué)試卷(解析版) 題型:解答題

某公司生產(chǎn)某種產(chǎn)品的固定成本為2萬元,每生產(chǎn)一件產(chǎn)品增加投入150元,已知收益T(單位:元)滿足T(x)=,其中x是產(chǎn)品的月產(chǎn)量.
(Ⅰ)將利潤W表示成月產(chǎn)量x的函數(shù);
(Ⅱ)當(dāng)月產(chǎn)量為多大時,公司的月利潤最大?(收益=成本+利潤)

查看答案和解析>>

同步練習(xí)冊答案