【題目】如圖,是一個三棱錐,是圓的直徑,是圓上的點,垂直圓所在的平面,,分別是棱,的中點.

1)求證:平面;

2)若二面角,,求與平面所成角的正弦值.

【答案】(1)證明見解析;(2).

【解析】

1)可證,再利用可得,從而可證平面.

2)可證為二面角的平面角,再以為坐標(biāo)原點,,方向分別為軸,軸,軸的正方向,建立如圖所示的空間直角坐標(biāo)系. 求出平面的法向量和直線的方向向量后可求與平面所成角的正弦值.

1)因為是圓的直徑,所以.

因為垂直圓所在的平面,且在該平面中,所以.

因為,分別是棱,的中點,

所以,所以,

又因為,所以有平面.

2)由(1)可知,,,

所以為二面角的平面角,

從而有,則.

,,得.

為坐標(biāo)原點,,,方向分別為軸,軸,軸的正方向,建立如圖所示的空間直角坐標(biāo)系.

,

,,,

,,

.

設(shè)是平面的法向量,則

可取.

.

所以直線與平面所成角的正弦值為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的幾何體中,側(cè)面ABCD為矩形,側(cè)面DEFG為平行四邊形,AB1AD2,AGBF,ABBF,AG3,BF5,二面角DABF的大小為60°.

1)證明,平面CDE⊥平面ADG

2)求直線BE與平面ABCD所成角的大小

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)處的切線方程為.

1)求函數(shù)的解析式;

2)若關(guān)于的方程fx)=kex(其中e為自然對數(shù)的底數(shù))恰有兩個不同的實根,求實數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校將一次測試中高三年級學(xué)生的數(shù)學(xué)成績統(tǒng)計如下表所示,在參加測試的學(xué)生中任取1人,其成績不低于120分的概率為.

分數(shù)

頻數(shù)

40

50

70

60

80

50

1)求的值;

2)若按照分層抽樣的方法從成績在、的學(xué)生中抽取6人,再從這6人中隨機抽取2人進行錯題分析,求這2人中至少有1人的分數(shù)在的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)且a≠0).

(1)求曲線y=f(x)在點(1,f(1))處的切線方程;

(2)若函數(shù)f(x)的極小值為,試求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直三棱柱的底面是直角三角形,

求證:平面

求二面角的余弦值;

求點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖甲,AD,BC是等腰梯形CDEF的兩條高,,點M是線段AE的中點,將該等腰梯形沿著兩條高AD,BC折疊成如圖乙所示的四棱錐P-ABCDE,F重合,記為點P.

1)求證:;

2)求點M到平面BDP距離h.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)當(dāng)時,求的最大值;

2)若只有一個極值點.

i)求實數(shù)的取值范圍;

ii)證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某購物商場分別推出支付寶和微信掃碼支付購物活動,活動設(shè)置了一段時間的推廣期,由于推廣期內(nèi)優(yōu)惠力度較大,吸引越來越多的人開始使用掃碼支付.現(xiàn)統(tǒng)計了活動剛推出一周內(nèi)每天使用掃碼支付的人次,用表示活動推出的天數(shù),表示每天使用掃碼支付的人次,統(tǒng)計數(shù)據(jù)如下表所示:

1)根據(jù)散點圖判斷,在推廣期內(nèi),掃碼支付的人次關(guān)于活動推出天數(shù)的回歸方程適合用來表示,求出該回歸方程,并預(yù)測活動推出第天使用掃碼支付的人次;

2)推廣期結(jié)束后,商場對顧客的支付方式進行統(tǒng)計,結(jié)果如下表:

支付方式

現(xiàn)金

會員卡

掃碼

比例

商場規(guī)定:使用現(xiàn)金支付的顧客無優(yōu)惠,使用會員卡支付的顧客享受折優(yōu)惠,掃碼支付的顧客隨機優(yōu)惠,根據(jù)統(tǒng)計結(jié)果得知,使用掃碼支付的顧客,享受折優(yōu)惠的概率為,享受折優(yōu)惠的概率為,享受折優(yōu)惠的概率為.現(xiàn)有一名顧客購買了元的商品,根據(jù)所給數(shù)據(jù)用事件發(fā)生的頻率來估計相應(yīng)事件發(fā)生的概率,估計該顧客支付的平均費用是多少?

參考數(shù)據(jù):設(shè),,,

參考公式:對于一組數(shù)據(jù),,,其回歸直線的斜率和截距的最小二乘估計公式分別為:

查看答案和解析>>

同步練習(xí)冊答案