分析 求出原函數(shù)的導函數(shù),利用基本不等式求其最小值,進一步求出切點坐標,再由直線方程點斜式得答案.
解答 解:由f(x)=$\frac{1}{2}$x2+lnx,得f′(x)=x+$\frac{1}{x}$(x>0),
∵x+$\frac{1}{x}$$≥2\sqrt{x•\frac{1}{x}}=2$(當且僅當x=$\frac{1}{x}$,即x=1時等號成立).
∴切點坐標為(1,$\frac{1}{2}$),斜率為2.
則斜率最小的切線方程為$y-\frac{1}{2}=2(x-1)$,
即4x-2y-3=0.
故答案為:4x-2y-3=0.
點評 本題考查利用導數(shù)研究過曲線上某點處的切線方程,訓練了利用基本不等式求最值,是中檔題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2f(ln2)>3f(ln3) | B. | 2f(ln2)<3f(ln3) | C. | 2f(ln2)≥3f(ln3) | D. | 2f(ln2)≤3f(ln3) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\hat b$叫做回歸系數(shù) | |
B. | 當$\hat b$>0,x每增加一個單位,y平均增加$\hat b$個單位 | |
C. | 回歸直線必經(jīng)過點$(\overline x,\overline y)$ | |
D. | $\hat a$叫做回歸系數(shù) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
捐款金額(單位:元) | [0,50) | [50,100) | [100,150) | [150,200) | [200,250) | [250,300) |
捐款人數(shù) | 4 | 152 | 26 | 10 | 3 | 5 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
年份 | 2012 | 2013 | 2014 | 2015 | 2016 |
年份代號x | 1 | 2 | 3 | 4 | 5 |
年求學花銷y | 3.2 | 3.5 | 3.8 | 4.6 | 4.9 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com