1.輾轉(zhuǎn)相除法與更相減損術(shù)都是求兩個(gè)正整數(shù)的最大公因數(shù)的有效算法,用這兩種方法均可求得1254和1881的最大公約數(shù)為627.

分析 利用輾轉(zhuǎn)相除法與更相減損術(shù)即可得出.

解答 解:①輾轉(zhuǎn)相除法:1881=1254+627,1254=627×2.
∴1254和1881的最大公約數(shù)為627.
②更相減損術(shù):1881-1254=627,1254-627=627,
∴1254和1881的最大公約數(shù)為627.
故答案為:627.

點(diǎn)評(píng) 本題考查了輾轉(zhuǎn)相除法與更相減損術(shù),考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.函數(shù)$y=sin2x-\sqrt{3}cos2x$的單調(diào)遞減區(qū)間是(  )
A.$[{kπ+\frac{π}{6},kπ+\frac{2π}{3}}](k∈Z)$B.$[{2kπ+\frac{5π}{12},2kπ+\frac{11π}{12}}](k∈Z)$
C.$[{kπ+\frac{5π}{12},kπ+\frac{11π}{12}}](k∈Z)$D.$[{2kπ+\frac{π}{6},2kπ+\frac{2π}{3}}](k∈Z)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.若某幾何體的三視圖如圖所示,則此幾何體的體積與表面積的比是$\frac{4}{9}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.設(shè)f(x)是R上的偶函數(shù),并且在(-∞,0)上是增函數(shù),已知x1<0,x2>0,且|x1|<|x2|,則( 。
A.f(-x1)>f(-x2B.f(-x1)<f(-x2
C.f(-x1)=f(-x2D.f(-x1)與f(-x2)的大小不定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.直線l過(guò)點(diǎn)(-1,2)且與直線2x-3y+4=0垂直,則l的方程是( 。
A.2x-3y+5=0B.2x-3y+8=0C.3x+2y-1=0D.3x+2y+7=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.廣告費(fèi)用x與銷售額y的統(tǒng)計(jì)數(shù)據(jù)如表:
廣告費(fèi)用x(萬(wàn)元)1245
銷售額y(萬(wàn)元)10263549
根據(jù)上表可得回歸方程$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$的$\stackrel{∧}{a}$約等于3,據(jù)此模型預(yù)報(bào)廣告費(fèi)用為6萬(wàn)元時(shí),銷售額為( 。
A.55萬(wàn)元B.53萬(wàn)元C.57萬(wàn)元D.59萬(wàn)元

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.以下莖葉圖記錄了甲、乙兩組各五名學(xué)生在一次英語(yǔ)聽(tīng)力測(cè)試中的成績(jī)(單位:分),已知甲組數(shù)據(jù)的中位數(shù)為18,乙組數(shù)據(jù)的平均數(shù)為16.8,則x,y的值分別為( 。
A.2,5B.8,6C.5,9D.8,8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.有一段演繹推理是這樣的:“若直線平行于平面,則直線平行于平面內(nèi)所有直線;已知直線b?平面α,直線a⊆平面α,直線b∥平面α,則直線b∥直線a”的結(jié)論顯然是錯(cuò)誤的,這是因?yàn)椋ā 。?table class="qanwser">A.大前提錯(cuò)誤B.小前提錯(cuò)誤C.推理形式錯(cuò)誤D.非以上錯(cuò)誤

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.在函數(shù)f(x)=$\frac{1}{2}$x2+lnx的所有切線中,斜率最小的切線方程為4x-2y-3=0.

查看答案和解析>>

同步練習(xí)冊(cè)答案