已知拋物線C:y2=8x與點M(-2,2),過C的焦點且斜率為k的直線與C交于A、B兩點,若·=0,則k等于( )
(A) (B) (C) (D)2
D
【解析】法一 設(shè)直線方程為y=k(x-2),A(x1,y1)、B(x2,y2),
由
得k2x2-4(k2+2)x+4k2=0,
∴x1+x2=,
x1x2=4,
由·=0,
得(x1+2,y1-2)·(x2+2,y2-2)=(x1+2)(x2+2)+[k(x1-2)-2][k(x2-2)-2]=0,
代入整理得k2-4k+4=0,
解得k=2.故選D.
法二 如圖所示,設(shè)F為焦點,取AB中點P,
過A、B分別作準線的垂線,垂足分別為G、H,
連接MF,MP,
由·=0,
知MA⊥MB,
則|MP|=|AB|=(|AG|+|BH|),
所以MP為直角梯形BHGA的中位線,
所以MP∥AG∥BH,
所以∠GAM=∠AMP=∠MAP,
又|AG|=|AF|,
|AM|=|AM|,
所以△AMG≌△AMF,
所以∠AFM=∠AGM=90°,
則MF⊥AB,所以k=-=2.
科目:高中數(shù)學 來源: 題型:
(A)4 (B)8
(C)16 (D)32
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
已知拋物線C:y2=4x.
(1)若橢圓左焦點及相應(yīng)的準線與拋物線C的焦點F及準線l分別重合,試求橢圓短軸端點B與焦點F連線中點P的軌跡方程;
(2)若M(m,0)是x軸上的一定點,Q是(1)所求軌跡上任一點,試問|MQ|有無最小值?若有,求出其值;若沒有,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年人教版高考數(shù)學文科二輪專題復習提分訓練16練習卷(解析版) 題型:解答題
已知拋物線C:y2=2px(p>0)過點A(1,-2).
(1)求拋物線C的方程,并求其準線方程.
(2)是否存在平行于OA(O為坐標原點)的直線l,使得直線l與拋物線C有公共點,且直線OA與l的距離等于?若存在,求出直線l的方程;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年人教版高考數(shù)學文科二輪專題復習提分訓練16練習卷(解析版) 題型:填空題
已知拋物線C:y2=2px(p>0)的準線為l,過M(1,0)且斜率為的直線與l相交于點A,與C的一個交點為B,若=,則p= .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com