已知集合A={X|a+1≤x≤2a-1},B={x|-2≤x≤5},且A⊆B,則a的取值范圍是


  1. A.
    a<2
  2. B.
    a<3
  3. C.
    2≤a≤3
  4. D.
    a≤3
D
分析:由已知中A={X|a+1≤x≤2a-1},B={x|-2≤x≤5},且A⊆B,我們可以分A=∅與A≠∅,A中元素均為B中元素兩種情況來進行分析,易得結(jié)果.
解答:當(dāng)2a-1<a+1,即a<2,時,A=∅,滿足要求;
當(dāng)2a-1≥a+1,即a≥2,時
若A⊆B,則
解得2≤a≤3
綜上,滿足條件的a的取值范圍是a≤3
故選D
點評:解決參數(shù)問題的集合運算,首先要理清題目要求,看清集合間存在的相互關(guān)系,注意分類討論、數(shù)形結(jié)合思想的應(yīng)用,還要注意空集作為一個特殊集合與非空集合間的關(guān)系,在解題中漏掉它極易導(dǎo)致錯解.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|x2+2x-3<0},B={x|
x+2x-3
<0}

(1)在區(qū)間(-4,4)上任取一個實數(shù)x,求“x∈A∩B”的概率;
(2)設(shè)(a,b)為有序?qū)崝?shù)對,其中a是從集合A中任取的一個整數(shù),b是從集合B中任取的一個整數(shù),求“b-a∈A∪B”的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|x>2,集合B={x|x>3},以下命題正確的個數(shù)是( 。
①?x0∈A,x0∉B                 ②?x0∈B,x0∉A ③?x∈A都有x∈B               ④?x∈B都有x∈A.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x||1-
x-13
|>2,x∈R}
,集合B={x|x2-2x+1-m2>0,m<0,x∈R},全集I=R,若“x∈A”是“x∈B”充分非必要條件,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2003•海淀區(qū)一模)已知集合A={x|a-1≤x≤a+2},B={x|3<x<5},則能使A?B成立的實數(shù)a的取值范圍是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|x2+3x-4<0},B={x|
x+2x-4
<0
}.
(1)在區(qū)間(-4,5)上任取一個實數(shù)x,求“x∈A∩B”的概率;
(2)設(shè)(a,b)為有序?qū)崝?shù)對,其中a,b分別是集合A,B中任取的一個整數(shù),求“a-b∈A∪B”的概率.

查看答案和解析>>

同步練習(xí)冊答案