16.直角坐標(biāo)方程與極坐標(biāo)方程互化;
(1)將x2-y2=a2化為極坐標(biāo)方程;
(2)將ρ=2asinθ化為直角坐標(biāo)方程.

分析 (1)把x=ρcosθ,y=ρsinθ代入x2-y2=a2,可得極坐標(biāo)方程.
(2)ρ=2asinθ即ρ2=2aρsinθ,把互化公式代入可得直角坐標(biāo)方程.

解答 解:(1)把x=ρcosθ,y=ρsinθ代入x2-y2=a2,可得極坐標(biāo)方程ρ2(cos2-sin2θ)=a2,ρ2cos2θ=a2
(2)ρ=2asinθ即ρ2=2aρsinθ,可得直角坐標(biāo)方程:x2+y2=2ay.

點(diǎn)評(píng) 本題考查了極坐標(biāo)方程與直角坐標(biāo)方程的互化,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知f(x)=$\left\{\begin{array}{l}{\frac{2}{x},x≥2}\\{(x-1)^{3},x<2}\end{array}\right.$,若函數(shù)g(x)=f(x)-k有兩個(gè)零點(diǎn),則兩零點(diǎn)所在的區(qū)間為( 。
A.(-∞,0)B.(0,1)C.(1,2)D.(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.為調(diào)查某地區(qū)老年人是否需要志愿者提供幫助,用簡(jiǎn)單隨機(jī)抽樣方法從該地區(qū)調(diào)查了500位老人,結(jié)果如表:
是否需要志愿者
需要4030
不需要160270
由${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$算得,K2≈9.967
附表:
P(K2≥k)0.0500.0100.001
k3.8416.63510.828
參照附表,得到的正確結(jié)論是( 。
A.有99%以上的把握認(rèn)為“需要志愿者提供幫助與性別無關(guān)”
B.有99%以上的把握認(rèn)為“需要志愿者提供幫助與性別有關(guān)”
C.在犯錯(cuò)誤的概率不超過0.1%的前提下,認(rèn)為“需要志愿者提供幫助與性別有關(guān)”
D.在犯錯(cuò)誤的概率不超過0.1%的前提下,認(rèn)為“需要志愿者提供幫助與性別無關(guān)”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.定積分${∫}_{0}^{1}$(2x+ex)dx的值為( 。
A.e+2B.e+1C.eD.e-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.圓ρ=2$\sqrt{2}$(cosθ-sinθ)的圓心極坐標(biāo)是( 。
A.$(\sqrt{2},\frac{3π}{4})$B.$({2,\frac{7π}{4}})$C.$(2,\frac{5π}{4})$D.$({2,\frac{3π}{4}})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知:角θ為銳角,且sinθ=$\frac{1}{3}$.
(1)求sin($\frac{π}{4}$-θ)的值;
(2)求cos2θ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.如圖是拋物線形拱橋,當(dāng)水面在l時(shí),拱頂離水面4米,水面寬8米.水位上升1米后,水面寬為( 。
A.$\sqrt{3}$米B.$2\sqrt{3}$米C.$3\sqrt{3}$米D.$4\sqrt{3}$米

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.在△ABC中,角A、B、C所對(duì)的邊分別是a、b、c,且a2+c2-b2=ac.
(Ⅰ)求角B的大;
(Ⅱ)若b=$\sqrt{2}$,C=45°,求c邊的長(zhǎng)及面積S△ABC

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.求函數(shù)y=-x2+2ax(其中a為常數(shù))在區(qū)間[-1,1]上的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案