A. | $(\sqrt{2},\frac{3π}{4})$ | B. | $({2,\frac{7π}{4}})$ | C. | $(2,\frac{5π}{4})$ | D. | $({2,\frac{3π}{4}})$ |
分析 把圓的極坐標(biāo)方程化為直角坐標(biāo)方程,經(jīng)過配方可得圓心直角坐標(biāo),再化為極坐標(biāo)即可得出.
解答 解:圓ρ=2$\sqrt{2}$(cosθ-sinθ)即:ρ2=2$\sqrt{2}$ρ(cosθ-sinθ),
化為直角坐標(biāo)方程:x2+y2=2$\sqrt{2}$(x-y),
配方為:$(x-\sqrt{2})^{2}$+$(y+\sqrt{2})^{2}$=4.
圓心C$(\sqrt{2},-\sqrt{2})$,可得極坐標(biāo)$ρ=\sqrt{(\sqrt{2})^{2}+(-\sqrt{2})^{2}}$=2,tanθ=$\frac{-\sqrt{2}}{\sqrt{2}}$-1,且θ在第四象限,
∴θ=$\frac{7π}{4}$.
∴圓心C極坐標(biāo)為$(2,\frac{7π}{4})$.
故選:B.
點(diǎn)評(píng) 本題考查了極坐標(biāo)方程與直角坐標(biāo)方程的互化、圓的標(biāo)準(zhǔn)方程,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,$\frac{1}{3}$) | B. | ($\frac{1}{3}$,+∞) | C. | (-∞,$\frac{1}{3}$) | D. | (-∞,$\frac{1}{3}$)∪($\frac{1}{3}$,+∞) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com