【題目】已知函數(shù)

(1)若曲線在點處的切線與曲線的公共點的橫坐標(biāo)之和為3,求的值;

(2)當(dāng)時,對任意,使恒成立,求實數(shù)的取值范圍.

【答案】(1)(2)

【解析】試題分析:(1)首先求出 ,代入切線公式 聯(lián)立函數(shù)解得 ,根據(jù)條件橫坐標(biāo)之和為3,解得 ;(2)將不等式恒成立問題轉(zhuǎn)化為 ,根據(jù) ,分別求函數(shù) 的最小值,即求得的取值范圍.

試題解析:(1),則,

所以切線方程為,代入,則,

所以,即

(2),

,則,

,則

因為,所以,

所以當(dāng)時, ,函數(shù)單調(diào)遞減,

當(dāng)時, ,函數(shù)單調(diào)遞增,

所以函數(shù)的極小值為,又,

易知,當(dāng)時,函數(shù)單調(diào)遞增,故,所以,

即當(dāng)時, ,

,

其對應(yīng)圖像的對稱軸為,所以時, ,

所以,故有,

,因為,所以

所以

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,角A,B,C所對應(yīng)的邊分別為a,b,c,且(2a﹣c)cosB=bcosC. (Ⅰ)求角B的大;
(Ⅱ)若 ,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,甲船從A處以每小時30海里的速度沿正北方向航行,乙船在B處沿固定方向勻速航行,B在A北偏西105°方向用與B相距10 海里處.當(dāng)甲船航行20分鐘到達(dá)C處時,乙船航行到甲船的北偏西120°方向的D處,此時兩船相距10海里.

(1)求乙船每小時航行多少海里?
(2)在C的北偏西30°方向且與C相距 海里處有一個暗礁E,周圍 海里范圍內(nèi)為航行危險區(qū)域.問:甲、乙兩船按原航向和速度航行有無危險?若有危險,則從有危險開始,經(jīng)過多少小時后能脫離危險?若無危險,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】自點A(-3,3)發(fā)出的光線L射到x軸上,被x軸反射,其反射光線所在直線與圓x2+y2-4x-4y+7=0相切,求光線L所在直線的方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中常數(shù)

(Ⅰ)當(dāng),求函數(shù)的單調(diào)遞增區(qū)間;

(Ⅱ)設(shè)定義在上的函數(shù)在點處的切線方程為, 若內(nèi)恒成立,則稱為函數(shù)的“類對稱點”,當(dāng)時,試問是否存在“類對稱點”,若存在,請求出一個“類對稱點”的橫坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)點為橢圓的左焦點,直線被橢圓截得弦長為

(1)求橢圓的方程;

(2)圓與橢圓交于兩點, 為線段上任意一點,直線交橢圓兩點為圓的直徑,且直線的斜率大于,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中新網(wǎng)2016年12月19日電根據(jù)預(yù)報,今天開始霧霾范圍將進(jìn)一步擴(kuò)大 日夜間至日,嚴(yán)時段部分地區(qū)濃度值會超過微克/立方米. 而此輪霧最嚴(yán)的時段,將有包括京津冀、山西、陜西、河南等個省市在內(nèi)的地區(qū)被霧籠罩. 是指大氣中直徑小于或等于微米的顆粒物也稱為可人肺粒物. 日均值在微克/立方米以下空氣質(zhì);克/立方米克/立方米之間空氣質(zhì)為二級;微克/立方米以上空氣質(zhì)為超標(biāo).某地區(qū)在2016年12月19日至28日每天的監(jiān)測數(shù)據(jù)的莖葉圖如下:

(1)求出這些數(shù)據(jù)的中位數(shù)與極差;

(2)從所給的空氣質(zhì)不超標(biāo)的天的數(shù)據(jù)中任意抽取天的數(shù)據(jù),求這天中恰好有空氣質(zhì)為一級,另一天空氣質(zhì)量為二級的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出以下四個命題:
①若 <0,則 + >2;
②若a>b,則am2>bm2
③在△ABC中,若sinA=sinB,則A=B;
④任意x∈R,都有ax2﹣ax+1≥0,則0<a≤4.
其中是真命題的有(
A.①②
B.②③
C.①③
D.③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知向量 =(cosα,sinα), =(cosβ,sinβ),| |=
(1)求cos(α﹣β)的值;
(2)若﹣ <β<0<α< ,且sinβ=﹣ ,求sinα的值.

查看答案和解析>>

同步練習(xí)冊答案