19.實數(shù)x,y滿足不等式組$\left\{\begin{array}{l}x≥0\\ y≥0\\ x-y-1≤0\\ x-2y+1≥0\end{array}\right.$,則2x-y的最大值為( 。
A.$-\frac{1}{2}$B.0C.2D.4

分析 作出不等式組對應(yīng)的平面區(qū)域,利用目標(biāo)函數(shù)k的幾何意義,進行平移,結(jié)合圖象得到k=2x-y的最大值.

解答 解:作出不等式組對應(yīng)的平面區(qū)域如圖:(陰影部分).
由k=2x-y得y=2x-k,
平移直線y=2x-k,
由圖象可知當(dāng)直線y=2x-k經(jīng)過點A時,直線y=2x-k的截距最小,
此時k最大.
由$\left\{\begin{array}{l}{x-y-1=0}\\{x-2y+1=0}\end{array}\right.$可得A(3,2),標(biāo)代入目標(biāo)函數(shù)k=2×3-2=4,
即k=2x-y的最大值為4.
故選:D.

點評 本題主要考查線性規(guī)劃的應(yīng)用,利用數(shù)形結(jié)合是解決此類問題的基本方法,利用k的幾何意義是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.“x2-4x<0”的一個充分不必要條件為( 。
A.0<x<4B.0<x<2C.x>0D.x<4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知復(fù)數(shù)$z=\frac{1}{1+i}+i$,則z在復(fù)平面內(nèi)對應(yīng)的點在( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知a∈{0,1,2},b∈{-1,1,3,5},則函數(shù)f(x)=ax2-2bx在區(qū)間(1,+∞)上為增函數(shù)的概率是( 。
A.$\frac{5}{12}$B.$\frac{1}{3}$C.$\frac{1}{4}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.在平面直角坐標(biāo)系中,直線l的參數(shù)方程為$\left\{\begin{array}{l}x=-1+\frac{{\sqrt{2}}}{2}t\\ y=-5+\frac{{\sqrt{2}}}{2}t\end{array}\right.$(其中t為參數(shù)),現(xiàn)以坐標(biāo)原點為極點,x軸的正半軸為極軸建立極坐標(biāo)系,已知曲線C的極坐標(biāo)方程為ρ=4cosθ.
(Ⅰ)寫出直線l和曲線C的普通方程;
(Ⅱ)已知點P為曲線C上的動點,求P到直線l的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.設(shè)數(shù)列{an}各項為正數(shù),且a2=4a1,${a_{n+1}}=a_n^2+2{a_n}({n∈{N^*}})$.
(Ⅰ)證明:數(shù)列{log3(1+an)}為等比數(shù)列;
(Ⅱ)設(shè)數(shù)列{log3(an+1)}的前n項和為Tn,求使Tn>520成立時n的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.某商場進行有獎促銷活動,顧客購物每滿500元,可選擇返回50元現(xiàn)金或參加一次抽獎,抽獎規(guī)則如下:從1個裝有6個白球、4個紅球的箱子中任摸一球,摸到紅球就可獲得100元現(xiàn)金獎勵,假設(shè)顧客抽獎的結(jié)果相互獨立.
(Ⅰ)若顧客選擇參加一次抽獎,求他獲得100元現(xiàn)金獎勵的概率;
(Ⅱ)某顧客已購物1500元,作為商場經(jīng)理,是希望顧客直接選擇返回150元現(xiàn)金,還是選擇參加3次抽獎?說明理由;
(Ⅲ)若顧客參加10次抽獎,則最有可能獲得多少現(xiàn)金獎勵?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.為了解市民在購買食物時看營養(yǎng)說明與性別的關(guān)系,現(xiàn)在社會上隨機詢問了100名市民,得到如下2×2列聯(lián)表:
(1)是否有95%的把握認(rèn)為:“性別與讀營養(yǎng)說明有關(guān)系”,并說明理由;
(2)把頻率當(dāng)概率,若從社會上的男性市民中隨機抽取3位,記這3位中讀營養(yǎng)說明的人數(shù)為ξ,求隨機變量ξ的分布列和數(shù)學(xué)期望E(ξ).
男性女性總計
讀營養(yǎng)說明402060
不讀營養(yǎng)說明202040
總計6040100
參考公式和數(shù)據(jù):${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$
P(K2≥k0
 
0.100.0500.0250.010
k0
 
2.7063.8415.0246.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.設(shè)f(x)=log2(2+|x|)-$\frac{1}{2+{x}^{2}}$,則使得f(x-1)>f(2x)成立的x取值范圍是(-1,$\frac{1}{3}$).

查看答案和解析>>

同步練習(xí)冊答案