分析 (Ⅰ)由三視圖知該幾何體是一個底面為矩形,高為4,頂點(diǎn)在底面的射影是底面中心的四棱錐,由此能求出該幾何體的體積.
(Ⅱ)該四棱錐有兩個側(cè)面是全等的等腰三角形,另外兩個側(cè)面也是全等的等腰三角形,由此能求出該幾何體的面積.
解答 解:(Ⅰ)由三視圖知該幾何體是一個底面為矩形,高為4,頂點(diǎn)在底面的射影是底面中心的四棱錐,
∴該幾何體的體積V=$\frac{1}{3}×(8×6)×4$=64.
(Ⅱ)該四棱錐有兩個側(cè)面是全等的等腰三角形,且其高為h1=$\sqrt{{4}^{2}+(\frac{8}{2})^{2}}$=4$\sqrt{2}$,
另外兩個側(cè)面也是全等的等腰三角形,這兩個側(cè)面的高為${{h}_{2}}^{\;}$=$\sqrt{{4}^{2}+(\frac{6}{2})^{2}}$=5,
∴該幾何體的面積S=2($\frac{1}{2}×6×4\sqrt{2}+\frac{1}{2}×8×5$)+8×6=88+24$\sqrt{2}$.
點(diǎn)評 本題考查幾何體的體積和面積的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意三視圖的性質(zhì)的合理運(yùn)用.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 命題p:“?x∈R,sin x+cos x=$\sqrt{2}$”,則非P是真命題 | |
B. | “a>1”是“f(x)=logax(a>0,且a≠1)在(0,+∞)上為增函數(shù)”的充要條件 | |
C. | 命題“?x∈R,$\sqrt{x+1}$>x”的否定是真命題 | |
D. | “x=-1”是“x2-5x-6=0”的必要不充分條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -30 | B. | 15 | C. | -60 | D. | -15 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | B. | C. | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com