設(shè)是橢圓的兩個焦點,是以為直徑的圓與橢圓的一個交點,且,則該橢圓的離心率為           (      )
.    .    .   .
A
本題考查橢圓定義和解三角形知識。因為=,由正弦定理得=
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:填空題

設(shè)分別為橢圓的左、右焦點,點在橢圓上,若;則點的坐標是       ______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓的中心在原點,焦點軸上,且焦距為,實軸長為4
(Ⅰ)求橢圓的方程;
(Ⅱ)在橢圓上是否存在一點,使得為鈍角?若存在,求出點的橫坐標的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分12分)已知是橢圓的兩個焦點,是橢圓上的點,且
(1)求的周長;   
(2)求點的坐標

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分14分)
橢圓過點P,且離心率為,F(xiàn)為橢圓的右焦點,、兩點在橢圓上,且 ,定點(-4,0).

(Ⅰ)求橢圓C的方程;
(Ⅱ)當時 ,問:MN與AF是否垂直;并證明你的結(jié)論.
(Ⅲ)當兩點在上運動,且 =6, 求直線MN的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

.橢圓的左準線為,左、右焦點分別為,拋物線的準線也為,焦點為,記的一個交點為,則(    )
A.B.1C.2D.與,的取值有關(guān)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(12分)已知橢,的離心率為,直線與以原點為圓心,以橢圓的短半軸長為半徑的圓相切。
、求橢圓的方程;
、過點的直線(斜率存在時)與橢圓交于、兩點,設(shè)為橢圓軸負半軸的交點,且,求實數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知一隧道的截面是一個半橢圓面(如圖所示),要保證車輛正常通行,車頂離隧道頂部至少要有米的距離,現(xiàn)有一貨車,車寬米,車高米.
(1)若此隧道為單向通行,經(jīng)測量隧道的跨度是米,則應如何設(shè)計隧道才能保證此貨車正常通行?
(2)圓可以看作是長軸短軸相等的特殊橢圓,類比圓面積公式,
請你推測橢圓的面積公式.并問,當隧道為雙向通行(車道間的距離忽略不記)時,要使此貨車安全通過,應如何設(shè)計隧道,才會使同等隧道長度下開鑿的土方量最?

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

以原點為頂點,以橢圓C:的左準為準線的拋物線交橢圓C的右準
線交于A、B兩點,則|AB|=        。

查看答案和解析>>

同步練習冊答案