設(shè)分別為橢圓的左、右焦點(diǎn),點(diǎn)在橢圓上,若;則點(diǎn)的坐標(biāo)是       ______.
本題考查了橢圓的幾何性質(zhì)。
解:由題意得: 
設(shè)
     解得:
因?yàn)辄c(diǎn)在橢圓上
解得:  
所以點(diǎn)的坐標(biāo)是
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(13分)已知橢圓的焦點(diǎn)坐標(biāo)為,長(zhǎng)軸等于焦距的2倍.
(1)求橢圓的方程;
(2)矩形的邊軸上,點(diǎn)落在橢圓上,求矩形繞軸旋轉(zhuǎn)一周后所得圓柱體側(cè)面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題10分)已知橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,離心率為,且經(jīng)過(guò)點(diǎn),直線交橢圓于不同的兩點(diǎn)A,B.
(1)求橢圓的方程;
(2)求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分14分)已知橢圓的離心率為,以原點(diǎn)為圓心,橢圓的短半軸長(zhǎng)為半徑的圓與直線相切.
⑴求橢圓C的方程;
⑵設(shè),、是橢圓上關(guān)于軸對(duì)稱的任意兩個(gè)不同的點(diǎn),連結(jié)交橢圓于另一點(diǎn),求直線的斜率的取值范圍;
⑶在⑵的條件下,證明直線軸相交于定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

P是橢圓上的點(diǎn),F(xiàn)1、F2是兩個(gè)焦點(diǎn),則|PF1|·|PF2|的最大值與最小值之差是_____

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知是橢圓C:與圓F:的一個(gè)交點(diǎn),且圓心F是橢圓的一個(gè)焦點(diǎn),(1)求橢圓C的方程;(2)過(guò)F的直線交圓與P、Q兩點(diǎn),連AP、AQ分別交橢圓與M、N點(diǎn),試問(wèn)直線MN是否過(guò)定點(diǎn)?若過(guò)定點(diǎn),則求出定點(diǎn)坐標(biāo);若不過(guò)定點(diǎn),請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(14分)已知、是橢圓的左、右焦點(diǎn),A是橢圓上位于第一象限內(nèi)的一點(diǎn),點(diǎn)B也在橢圓上,且滿足為坐標(biāo)原點(diǎn)),,若橢圓的離心率等于
(1)求直線AB的方程;  (2)若的面積等于,求橢圓的方程;
(3)在(2)的條件下,橢圓上是否存在點(diǎn)M使得的面積等于?若存在,求出點(diǎn)M的坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

( 9分) 如圖,過(guò)橢圓的左焦點(diǎn)F任作一條與兩坐標(biāo)軸都不垂直的弦AB,若點(diǎn)Mx軸上,且使得MF為△AMB的一條內(nèi)角平分線,則稱點(diǎn)M為該橢圓的“左特征點(diǎn)”.求橢圓的“左特征點(diǎn)”M的坐標(biāo);

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)是橢圓的兩個(gè)焦點(diǎn),是以為直徑的圓與橢圓的一個(gè)交點(diǎn),且,則該橢圓的離心率為           (      )
.    .    .   .

查看答案和解析>>

同步練習(xí)冊(cè)答案