某高校在2011年的自主招生考試成績中隨機抽取100名學(xué)生的筆試成績,按成績分組,得到的頻率分布表如圖所示.
(Ⅰ)請先求出頻率分布表中①、②位置相應(yīng)的數(shù)據(jù),完成頻率分布直方圖;
(Ⅱ)為了能選拔出最優(yōu)秀的學(xué)生,高校決定在筆試成績高的第3、4、5組中用分層抽樣抽取6名學(xué)生進入第二輪面試,求第3、4、5組每組各抽取多少名學(xué)生進入第二輪面試?
組號分組頻數(shù)頻率
第1組[160,165)50.050
第2組[165,170)0.350
第3組[170,175)30
第4組[175,180)200.200
第5組[180,185]100.100
合計1001.00
考點:頻率分布直方圖,分層抽樣方法
專題:概率與統(tǒng)計
分析:(Ⅰ)根據(jù)頻率分布表計算相應(yīng)的人數(shù)和頻率即可完成頻率分布直方圖;
(Ⅱ)根據(jù)分層抽樣的定義建立比例關(guān)系即可得到結(jié)論.
解答: 解:(Ⅰ)由題可知,第2組的頻數(shù)為0.35×100=35人,第3組的頻率為
30
100
=0.300
,頻率分布直方圖如圖所示:
(Ⅱ)因為第3、4、5組共有60名學(xué)生,所以利用分層抽樣在60名學(xué)生中抽取6名學(xué)生,每組分別為:
第3組:
30
60
×6=3人,
第4組
20
60
×6=2人,
第5組:
10
60
×6=1人,
所以第3、4、5組分別抽取3人、2人、1人.
點評:本題主要考查分層抽樣和頻率分布直方圖的應(yīng)用,根據(jù)條件建立比例關(guān)系是解決此類問題的基本方法,比較基礎(chǔ).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知命題p:平行于同一直線的兩個平面平行;命題q:垂直于同一平面的兩條直線平行,那么( 。
A、“p或q”是假命題
B、“p且q”是真命題
C、“¬p或q”是假命題
D、“¬p且q”是真命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知角α的終邊在函數(shù)y=2x(x>0)的圖象上,則1-2sinαcosα-3cos2α的值( 。
A、-
2
5
B、±
2
5
C、-2
D、±2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,已知⊙O的半徑為5,兩弦AB、CD相交于AB的中點E,且AB=8,CE:ED=4:9,則圓心到弦CD的距離為( 。
A、
2
14
3
B、
28
9
C、
2
7
3
D、
80
9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知首項為
1
2
的等比數(shù)列{an}是遞減數(shù)列,其前n項和為Sn,且S1+a1,S2+a2,S3+a3成等差數(shù)列.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)若bn=an•log2an,數(shù)列{bn}的前n項和Tn,求滿足不等式
Tn+2
n+2
1
16
的最大n值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)命題p:存在x∈R,使關(guān)于x的不等式x2+2x-m≤0成立;命題q:關(guān)于x的方程(4-m)•3x=9x+4有解;若命題p與q有且只有一個為真命題,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2a2lnx-x2(常數(shù)a>0).
(1)當(dāng)a=1時,求曲線y=f(x)在x=1處的切線方程;
(2)討論函數(shù)f(x)在區(qū)間(1,e2)上零點的個數(shù)(e為自然對數(shù)的底數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

據(jù)有關(guān)規(guī)定,汽車尾氣中CO2(二氧化碳)的排放量超過130g/km,視為排放量超標(biāo).某市環(huán)保局對甲、乙兩型品牌車各抽取5輛進行CO2排放量檢測,所得數(shù)據(jù)如下表所示(單位:g/km).其中有兩輛乙型車的檢測數(shù)據(jù)不準確,在表中用z,y表示.
甲型車 80 110 120 140 150
乙型車 100 120 x y 160
(Ⅰ)從被檢測的5輛甲型車中任取2輛,求這2輛車CO2排放量都不超標(biāo)的概率;
(Ⅱ)若5輛乙型車CO2排放量的平均值為120g/km,且80<x<130,求乙型車CO2排放量的方差的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)集A={a1,a2,…,an}(0≤a1<a2<…<an,n≥2,n∈N*)具有性質(zhì)P:?i,j(1≤i≤j≤n),ai+aj與aj-ai兩數(shù)中至少有一個屬于A.
(1)分別判斷數(shù)集{1,2,3,4}是否具有性質(zhì)P,并說明理由;
(2)證明:a1=0;
(3)證明:當(dāng)n=5時,a1,a2,a3,a4,a5成等差數(shù)列.

查看答案和解析>>

同步練習(xí)冊答案