已知首項(xiàng)為
1
2
的等比數(shù)列{an}是遞減數(shù)列,其前n項(xiàng)和為Sn,且S1+a1,S2+a2,S3+a3成等差數(shù)列.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若bn=an•log2an,數(shù)列{bn}的前n項(xiàng)和Tn,求滿足不等式
Tn+2
n+2
1
16
的最大n值.
考點(diǎn):數(shù)列與不等式的綜合
專題:等差數(shù)列與等比數(shù)列,不等式的解法及應(yīng)用
分析:(Ⅰ)設(shè)出等比數(shù)列的公比,由S1+a1,S2+a2,S3+a3成等差數(shù)列,結(jié)合a1=
1
2
且數(shù)列{an}是遞減數(shù)列求出公比,則等比數(shù)列{an}的通項(xiàng)公式可求;
(Ⅱ)把{an}的通項(xiàng)公式代入bn=an•log2an,利用錯(cuò)位相減法求出數(shù)列{bn}的前n項(xiàng)和Tn,代入
Tn+2
n+2
1
16
求得n的最大值.
解答: 解:(I)設(shè)等比數(shù)列{an}的公比為q,由題知a1=
1
2
,
又∵S1+a1,S2+a2,S3+a3成等差數(shù)列,
∴2(S2+a2)=S1+a1+S3+a3,
變形得S2-S1+2a2=a1+S3-S2+a3,即得3a2=a1+2a3
3
2
q=
1
2
+q2,解得q=1或q=
1
2

又由{an}為遞減數(shù)列,
∴q=
1
2
,
∴an=a1qn-1=(
1
2
n;
(Ⅱ)由于bn=anlog2an=-n•(
1
2
n,
Tn=-[1•
1
2
+2•(
1
2
)2+…+(n-1)•(
1
2
)n-1+n•(
1
2
)n]
,
1
2
Tn=-[1•(
1
2
)2+2•(
1
2
)3+…+(n-1)•(
1
2
)n+n•(
1
2
)n+1]
,
兩式相減得:
1
2
Tn=-[
1
2
+(
1
2
)2+…+(
1
2
)n-n•(
1
2
)n+1]

=-
1
2
•[1-(
1
2
)
n
]
1-
1
2
+n•(
1
2
)n+1
,
Tn=(n+2)•(
1
2
)n-2

Tn+2
n+2
=(
1
2
)n

(
1
2
)n
1
16
,解得n≤4.
∴n的最大值為4.
點(diǎn)評(píng):本題是數(shù)列與不等式的綜合題,考查了等比數(shù)列通項(xiàng)公式的求法,訓(xùn)練了錯(cuò)位相減法求數(shù)列的前n項(xiàng)和,考查了指數(shù)不等式的解法,是中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知m,n,l是不同的直線,α,β,γ是不同的平面,給出下列命題:
①若m∥n,n?α,則m∥α;
②若m⊥l,n⊥l,則m∥n;
③若m⊥n,m∥α,n∥β,則α⊥β;
④若α⊥γ,β⊥γ,則α∥β.
其中正確的命題個(gè)數(shù)有( 。
A、0個(gè)B、1個(gè)C、2個(gè)D、3個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知扇形圓心角的弧度數(shù)為2,周長(zhǎng)為4,則此扇形的面積為( 。
A、1
B、2
C、
π
180
D、
π
90

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=asinx+b
3x
+4(a,b∈R)且f(lglog310)=5,則f(lglg3)=( 。
A、0B、-3C、-5D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)不等式組
x-2≤0
x+y≥0
x-y≥0
,表示的平面區(qū)域?yàn)棣,在區(qū)域Ω內(nèi)任取一點(diǎn)P(x,y),則P點(diǎn)的坐標(biāo)滿足不等式x2+y2≤2的概率為( 。
A、
π
8
B、
π
4
C、
1
2+π
D、
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某高校在2011年的自主招生考試成績(jī)中隨機(jī)抽取100名學(xué)生的筆試成績(jī),按成績(jī)分組,得到的頻率分布表如圖所示.
(Ⅰ)請(qǐng)先求出頻率分布表中①、②位置相應(yīng)的數(shù)據(jù),完成頻率分布直方圖;
(Ⅱ)為了能選拔出最優(yōu)秀的學(xué)生,高校決定在筆試成績(jī)高的第3、4、5組中用分層抽樣抽取6名學(xué)生進(jìn)入第二輪面試,求第3、4、5組每組各抽取多少名學(xué)生進(jìn)入第二輪面試?
組號(hào)分組頻數(shù)頻率
第1組[160,165)50.050
第2組[165,170)0.350
第3組[170,175)30
第4組[175,180)200.200
第5組[180,185]100.100
合計(jì)1001.00

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

數(shù)列{an}滿足an=Sn-1+n,a1=0,求{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓錐的體積是12πcm3,其側(cè)面展開(kāi)圖是中心角為216°的扇形.
(1)求圓錐側(cè)面積;
(2)若一個(gè)圓柱下底面在圓錐的底面上,上底面與圓錐面相切,求該圓柱側(cè)面積最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

數(shù)列{an}、{bn}的每一項(xiàng)都是正數(shù),a1=8,b1=16,且an、bn、an+1成等差數(shù)列,bn、an+1、bn+1成等比數(shù)列,n=1,2,3,…
(Ⅰ)求a2、b2的值;
(Ⅱ)求數(shù)列{an}、{bn}的通項(xiàng)公式;
(Ⅲ)記
1
cn
=
1
an
+
1
an+1
,證明:對(duì)一切正整數(shù)n,有
1
c1
+
1
c2
+
1
c3
+…+
1
cn
3
8

查看答案和解析>>

同步練習(xí)冊(cè)答案