分析 (Ⅰ)由$\left\{\begin{array}{l}ρ=2cosθ\\ ρ=sinθ\end{array}\right.$,得2cosθ=sinθ,化簡即可得出kOA.
(Ⅱ)設(shè)A的極角為θ,tanθ=2,則$sinθ=\frac{{2\sqrt{5}}}{5},cosθ=\frac{{\sqrt{5}}}{5}$,把$B({{ρ_1},θ-\frac{π}{2}})$,代入ρ=2cosθ得ρ1.把$C({{ρ_2},θ+\frac{π}{2}})$,代入ρ=sinθ得ρ2,利用|BC|=ρ1+ρ2,即可得出.
解答 解:(Ⅰ)由$\left\{\begin{array}{l}ρ=2cosθ\\ ρ=sinθ\end{array}\right.$,得2cosθ=sinθ,tanθ=2,∴kOA=2.
(Ⅱ)設(shè)A的極角為θ,tanθ=2,則$sinθ=\frac{{2\sqrt{5}}}{5},cosθ=\frac{{\sqrt{5}}}{5}$,
則$B({{ρ_1},θ-\frac{π}{2}})$,代入ρ=2cosθ得${ρ_1}=2cos({θ-\frac{π}{2}})=2sinθ=\frac{{4\sqrt{5}}}{5}$.
$C({{ρ_2},θ+\frac{π}{2}})$,代入ρ=sinθ得${ρ_2}=sin({θ+\frac{π}{2}})=cosθ=\frac{{\sqrt{5}}}{5}$,
∴$|{BC}|={ρ_1}+{ρ_2}=\frac{{4\sqrt{5}}}{5}+\frac{{\sqrt{5}}}{5}=\sqrt{5}$.
點(diǎn)評 本題考查了極坐標(biāo)方程的應(yīng)用、斜率計算、弦長計算,考查了推理能力與計算能力,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (1,2) | B. | [1,2] | C. | (1,2] | D. | [1,2) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $(\overrightarrow{AB}+\overrightarrow{CD})+\overrightarrow{BC}$ | B. | $(\overrightarrow{AD}+\overrightarrow{MB})+(\overrightarrow{BC}+\overrightarrow{CM})$ | C. | $\overrightarrow{OC}-\overrightarrow{OA}+\overrightarrow{CD}$ | D. | $\overrightarrow{MB}+\overrightarrow{AD}-\overrightarrow{BM}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,-1)∪(0,1) | B. | (-1,0)∪(1,+∞) | C. | (-2,-1)∪(1,2) | D. | (-∞,-2)∪(2,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com