2.在R上可導(dǎo)的函數(shù)f(x)的圖象如圖所示,則關(guān)于x的不等式x•f′(x)>0的解集為( 。
A.(-∞,-1)∪(0,1)B.(-1,0)∪(1,+∞)C.(-2,-1)∪(1,2)D.(-∞,-2)∪(2,+∞)

分析 利用函數(shù)的圖象判斷函數(shù)的單調(diào)性,集合導(dǎo)函數(shù)的符號(hào),求解不等式的解集即可.

解答 解:在(-∞,-1)和(1,+∞)上f(x)遞增,所以f′(x)>0,使xf′(x)>0的范圍為(1,+∞);
在(-1,1)上f(x)遞減,所以f′(x)<0,使xf′(x)<0的范圍為(-1,0).
故選:B.

點(diǎn)評(píng) 本題考查函數(shù)的單調(diào)性與導(dǎo)函數(shù)的符號(hào)的關(guān)系,不等式的解法,考查轉(zhuǎn)化思想以及計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知平面向量$\overrightarrow a$與$\overrightarrow b$的夾角為$\frac{π}{3}$,且|$\overrightarrow a$+2$\overrightarrow b}$|=2$\sqrt{3}$,|${\overrightarrow b}$|=1,則|$\overrightarrow a}$|=( 。
A.1B.$\sqrt{3}$C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知偶函數(shù)y(x)的定義域?yàn)镽,且在(0,+∞)上單調(diào)遞增,則下列成立的是(  )
A.f(-$\frac{1}{2}$)>f(a2+a+1)B.f(-$\frac{1}{2}$)≤f(a2+a+1)C.f(-$\frac{1}{2}$)≥f(a2+a+1)D.f(-$\frac{1}{2}$)<f(a2+a+1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知平面向量$\overrightarrow{a}$和$\overrightarrow$的夾角為60°,$\overrightarrow{a}$=(0,1),|$\overrightarrow$|=2,則|2$\overrightarrow{a}$+$\overrightarrow$|=( 。
A.2B.12C.$\sqrt{3}$D.2$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.在平面直角坐標(biāo)系xOy中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系.圓ρ=2cosθ與圓ρ=sinθ交于O,A兩點(diǎn).
(Ⅰ)求直線OA的斜率;
(Ⅱ)過(guò)O點(diǎn)作OA的垂線分別交兩圓于點(diǎn)B,C,求|BC|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.下列關(guān)于獨(dú)立性檢驗(yàn)的說(shuō)法中,錯(cuò)誤的是( 。
A.獨(dú)立性檢驗(yàn)依據(jù)小概率原理
B.獨(dú)立性檢驗(yàn)原理得到的結(jié)論一定正確
C.樣本不同,獨(dú)立性檢驗(yàn)的結(jié)論可能有差異
D.獨(dú)立性檢驗(yàn)不是判定兩類(lèi)事物是否相關(guān)的唯一方法

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.在平面直角坐標(biāo)系中.直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=-5+\frac{\sqrt{2}}{2}t}\\{y=-1+\frac{\sqrt{2}}{2}t}\end{array}\right.$(其中t為參數(shù)),現(xiàn)以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,已知曲線C的極坐標(biāo)方程為ρ=4cosθ.
(1)寫(xiě)出直線l和曲線C的普通方程;
(2)已知點(diǎn)P為曲線C上的動(dòng)點(diǎn),求P到直線l的距離的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知函數(shù)f(x)=|x-a2|+|2x+$\frac{2}{{a}^{2}}$|-3
(1)當(dāng)a=1時(shí),求不等式f(x)>2的解集;
(2)若對(duì)于任意非零實(shí)數(shù)a以及任意實(shí)數(shù)x,不等式f(x)>b-|x-a2|恒成立,求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.一個(gè)腰長(zhǎng)為2的等腰直角三角形繞著斜邊上的高所在直線旋轉(zhuǎn)180°形成的封閉曲面所圍成的圖形的體積為$\frac{2\sqrt{2}π}{3}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案