【題目】已知函數(shù)f(x)=loga(ax2-x+1)(a>0,a≠1).
(1) 若a=,求函數(shù)f(x)的值域.
(2) 當(dāng)f(x)在區(qū)間上為增函數(shù)時(shí),求a的取值范圍.
【答案】(1)(-∞,1].(2)∪[2,+∞).
【解析】試題分析:(1)先確定y=x2-x+1范圍為 ,再根據(jù)對(duì)數(shù)函數(shù)單調(diào)性確定函數(shù)值域(-∞,1].(2)由復(fù)合函數(shù)單調(diào)性依次討論:若a>1,則y=ax2-x+1在區(qū)間上為增函數(shù),結(jié)合二次函數(shù)對(duì)稱軸得,解得 a≥2;② 若0<a<1,則y=ax2-x+1在區(qū)間上為減函數(shù),結(jié)合二次函數(shù)對(duì)稱軸以及定義區(qū)間得,且 ,解得
試題解析: 解:(1) 若a=,則f(x)=log0.5=log0.5[ (x-1)2+]≤log0.5=1,
所以a=時(shí),函數(shù)f(x)的值域是(-∞,1].
(2) ① 若a>1,要f(x)在區(qū)間上為增函數(shù),只要≤且a-+1>0,解得a≥2;
② 若0<a<1,要f(x)在區(qū)間[,]上為增函數(shù),只要≥且a-+1>0,解得<a≤.
綜上所述,所求a的取值范圍是(,]∪[2,+∞).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,平面PAD⊥平面ABCD,AB∥DC,△PAD是等邊三角形,已知AD=4, ,AB=2CD=8.
(1)設(shè)M是PC上的一點(diǎn),證明:平面MBD⊥平面PAD;
(2)當(dāng)M點(diǎn)位于線段PC什么位置時(shí),PA∥平面MBD?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校100名學(xué)生其中考試語(yǔ)文成績(jī)的頻率分布直方圖所示,其中成績(jī)分組區(qū)間是:
.
(1)求圖中的值;
(2)根據(jù)頻率分布直方圖,估計(jì)這100名學(xué)生語(yǔ)文成績(jī)的平均分;
(3)若這100名學(xué)生語(yǔ)文某些分?jǐn)?shù)段的人數(shù)與數(shù)學(xué)成績(jī)相應(yīng)分?jǐn)?shù)段的人數(shù)之比如下表所示,
求數(shù)學(xué)成績(jī)?cè)?/span>之外的人數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列滿足,其中, .
(1)求, , ,并猜想的表達(dá)式(不必寫(xiě)出證明過(guò)程);
(2)設(shè),數(shù)列的前項(xiàng)和為,求證: .
(B)已知數(shù)列的前項(xiàng)和為,且滿足, .
(1)求, , , ,并猜想的表達(dá)式(不必寫(xiě)出證明過(guò)程);
(2)設(shè), ,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了在夏季降溫和冬季供暖時(shí)減少能源損耗,房屋的屋頂和外墻需要建造隔熱層.某幢建筑物要建造可使用20年的隔熱層,每厘米厚的隔熱層建造成本為6萬(wàn)元,該建筑物每年的能源消耗費(fèi)用 (單位:萬(wàn)元)與隔熱層厚度 (單位: )滿足關(guān)系,若不建隔熱層,每年能源消耗費(fèi)用為8萬(wàn)元.設(shè)為隔熱層建造費(fèi)用與20年的能源消耗費(fèi)用之和.
(1)求的值及的表達(dá)式;
(2)隔熱層修建多厚時(shí),總費(fèi)用達(dá)到最小,并求最小值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知平行四邊形中,,為的中點(diǎn),且△是等邊三角形,沿把△折起至的位置,使得.
(1)是線段的中點(diǎn),求證:平面;
(2)求證:;
(3)求點(diǎn)到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓:的離心率為,以為圓心,橢圓的短半軸長(zhǎng)為半徑的圓與直線相切.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)已知點(diǎn),和平面內(nèi)一點(diǎn)(),過(guò)點(diǎn)任作直線與橢圓相交于,兩點(diǎn),設(shè)直線,,的斜率分別為,,,,試求,滿足的關(guān)系式.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com